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Abstract

Standard voting rules usually assume that the preferences of voters are provided in the
form of complete rankings over a fixed set of candidates. This assumption does not hold
in applications like recommendation systems where the set of candidates is extremely large
and only partial preferences can be elicited. In this paper, we study the problem of strategic
manipulation of voting rules that aggregate voter preferences provided in the form of pairwise
comparisons between candidates. Our contribution is threefold: First, we show that any
pairwise voting rule under which each candidate has some chance of winning is manipulable
in principle. Next, we analyze how the computational complexity of manipulation of such
rules varies with the structure of the graph induced by the pairs of candidates that the
manipulator is allowed to compare and the type of the preference relation. Building on
natural connections between the pairwise manipulation and sports elimination problems, we
show that manipulating pairwise voting rules can be computationally hard even in the single
manipulator setting—a setting where most standard voting rules are known to be easy to
manipulate. Finally, we develop a comprehensive picture of the parameterized complexity
of the manipulation problem in terms of various natural structural parameters associated
with the action space of the manipulator.

1 Introduction

A central result in social choice theory (Arrow et al., 2010) is the Gibbard-Satterthwaite theo-
rem (Gibbard, 1973; Satterthwaite, 1975), which states that any non-dictatorial voting rule over
at least three candidates under which each candidate has some chance of winning is susceptible
to strategic voting (i.e., is manipulable). Given the impossibility suggested by this theorem,
there has been substantial work concerning a finer analysis of the situation and finding possible
workarounds. A prominent example is the seminal work of Bartholdi III et al. (1989b) who
proposed the possibility of using computational hardness as a barrier against the manipula-
tion of voting rules. They argue that although the opportunities for manipulation always exist
in principle, there might not exist an efficient general purpose algorithm for finding them in
practice.

Since then, a considerable body of work has developed around the computational study of
manipulation (Faliszewski and Procaccia, 2010; Walsh, 2011; Brandt et al., 2016). Much of
this work models voter preferences as complete rankings over a fixed set of candidates. While
this is a reasonable choice for certain situations, many large-scale settings prevalent today (e.g.,
recommendation systems) involve extremely large candidate sets (e.g., movies, products, web-
pages). It is therefore unreasonable, and often impractical, to ask the users to provide complete
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rankings of these candidates. For such settings, it is decidedly more natural to aggregate par-
tial preferences such as top-k rankings (Ailon, 2010; Narodytska and Walsh, 2014; Menon and
Larson, 2017) or partial orders (Pini et al., 2009) to arrive at an outcome. For a similar reason,
some situations might call for relaxing the requirement of transitivity among the preferences.
Indeed, when candidates are compared using not one but multiple quality parameters, it is
natural to permit possibly cyclic preferences (Elkind and Shah, 2014).

In this work, we consider the model of pairwise preferences, where each vote is simply a
collection of pairwise comparisons between the candidates, with no constraints other than anti-
symmetry (i.e., A�B ⇒ B 6�A). Voter preferences can therefore be incomplete (i.e., not all pairs
of candidates are compared by a voter) and can even contain cycles (e.g., A�B,B�C,C �A).
Modeling votes as sets of pairwise comparisons offers substantial generality, and, as a result,
there has been growing interest in designing algorithms that elicit pairwise preferences from
the users, especially in the machine learning and crowdsourcing communities (Lu and Boutilier,
2011; Jiang et al., 2011; Ailon, 2012; Negahban et al., 2012; Chen et al., 2013; Rajkumar and
Agarwal, 2014). Although these studies explore the statistical properties of algorithms for
aggregating pairwise preferences, the question of whether these algorithms (or pairwise voting
rules) are resistant to strategic behavior by the users remains to be answered. The focus of the
present work is to address these questions both from axiomatic and computational perspectives.

Our Contributions

1. We show that any pairwise voting rule that is onto (i.e., under which each candidate has
some chance of winning) must be manipulable (Section 4.1).

2. Given the above impossibility, we study settings under which computational difficulty
can provide a worst-case barrier against manipulation (Section 4.2). Specifically, we
study the problem of manipulation of pairwise voting rules along the following two di-
mensions: (a) the structure of the graph A induced by the pairs of candidates that the
manipulator is allowed to compare (e.g., tree, bipartite, complete graph) and (b) the type
of preference relation pref-type (e.g., total, acyclic). Our analysis focuses on the pair-
wise Borda (pBorda) voting rule and the Copelandα family of voting rules, both of which
are defined in Section 2.1. Tables 1 to 4 summarize our computational results for these
rules. The essence of our results is that the structure of the induced graph and the type of
revealed preferences (and the parameter α in case of Copelandα) can shape the complexity
landscape in important ways. We remark that while the manipulation problem in the con-
text of rankings is efficiently solvable for most voting rules (Bartholdi III et al., 1989b),
we already encounter hardness results for the relatively simple pBorda and Copelandα

rules in the pairwise preferences model, which we consider an important contrast.1

3. Our final set of results (Section 4.3) pertains to a comprehensive classification of the
parameterized complexity of the manipulation problem in terms of various parameters of
the graph structure such as maximum degree, size of minimum feedback vertex set, size of
minimum vertex cover, and several others, as summarized in Table 5. Figure 1 shows how
these parameters are related to each other.

2 Preliminaries

This section provides all the relevant definitions and concepts required for the presentation of
our results in Section 4.

1Even in the context of rankings, however, voting rules such as the second-order Copeland rule (Bartholdi III
et al., 1989b) and many elimination-style rules (Bartholdi III and Orlin, 1991; Xia et al., 2009; Davies et al.,
2012, 2014) are known to be computationally resistant to manipulation by a single voter.
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pref-type

total+acyclic acyclic total unrestricted

A
tree P P P P

(Theorem 3) (Theorem 3) (Theorem 3) (Theorem 3)

complete graph P NP-complete NP-complete NP-complete
(or clique) (Theorem 3) (Theorem 8) (Theorem 8) (Theorem 8)

bipartite graph P NP-complete NP-complete NP-complete
(Theorem 3) (Theorem 5) (Theorem 7) (Theorem 5)

general graph P NP-complete NP-complete NP-complete
(no restriction) (Theorem 3) (Theorem 5) (Theorem 7) (Theorem 5)

Table 1: The complexity of pBorda-Manipulation under the conditions specified by the
corresponding action space A and type of preference relation pref-type (refer to Section 2.2
for relevant definitions).

pref-type

total+acyclic acyclic total unrestricted

A

tree P P P P
(Corollary 4) (Corollary 4) (Corollary 4) (Corollary 4)

complete graph P P P P
(or clique) (Corollary 4) (Theorem 9) (Theorem 9) (Theorem 9)

bipartite graph P P P P
(Corollary 4) (Theorem 9) (Theorem 9) (Theorem 9)

general graph P P P P
(no restriction) (Corollary 4) (Theorem 9) (Theorem 9) (Theorem 9)

Table 2: The complexity of Copeland0-Manipulation and Copeland1-Manipulation.

2.1 Pairwise Preferences and Pairwise Voting Rules

Let [n] = {1, 2, . . . , n} denote the set of candidates and U = {u1, u2, . . . , um} denote the set of
voters. Let �u ⊆ [n]× [n] denote the binary relation indicating the preferences (or vote) of the
voter u, so that i�u j indicates that voter u prefers candidate i over candidate j. For each pair
of candidates i, j and each voter u, we can have exactly one of i�u j, j�u i or neither (i.e.,
voter u skips the comparison between i and j). We let R denote the set of all such asymmetric
binary relations on [n], and let Π = (�u1 ,�u2 , . . . ,�um) ∈ Rm denote the pairwise preference
profile of the voters.

A pairwise voting rule r maps a pairwise preference profile Π ∈ ∪∞k=1Rk to a unique
candidate r(Π) ∈ [n]. Given a preference profile Π ∈ Rm and a pair of candidates i, j,
let mij(Π) denote the number of voters who strictly prefer candidate i over candidate j.
That is, mij(Π) =

∑m
k=1[(i�uk j) ∈ Π] where [·] denotes the Iverson bracket.2 A score-based

pairwise voting rule is any pairwise voting rule r for which there exists a scoring func-
tion s : ∪∞k=1Rk → Rn such that r(Π) is the highest-scoring candidate according to s(Π) un-
der some fixed tie-breaking rule. That is, r(Π) = T (arg maxi si(Π)) for some tie-breaking
rule T : 2[n] \ {∅} → [n] satisfying T (S) ∈ S for all non-empty S ⊆ [n]. Some examples of score-
based pairwise voting rules are the following:

2The Iverson bracket [P ] equal 1 whenever the predicate P is true, and is 0 otherwise.
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pref-type

total+acyclic acyclic total unrestricted

A
tree P P P P

(Corollary 4) (Corollary 4) (Corollary 4) (Corollary 4)

complete graph P P NP-complete P
(or clique) (Corollary 4) (Theorem 9) (Theorem 12) (Theorem 9)

bipartite graph P P NP-complete P
(Corollary 4) (Theorem 9) (Theorem 12) (Theorem 9)

general graph P P NP-complete P
(no restriction) (Corollary 4) (Theorem 9) (Theorem 12) (Theorem 9)

Table 3: The complexity of Copeland0.5-Manipulation.

pref-type

total+acyclic acyclic total unrestricted

A

tree P P P P
(Corollary 4) (Corollary 4) (Corollary 4) (Corollary 4)

complete graph P NP-complete NP-complete NP-complete
(or clique) (Corollary 4) (Theorem 10) (Theorem 12) (Theorem 10)

bipartite graph P NP-complete NP-complete NP-complete
(Corollary 4) (Theorem 10) (Theorem 12) (Theorem 10)

general graph P NP-complete NP-complete NP-complete
(no restriction) (Corollary 4) (Theorem 10) (Theorem 12) (Theorem 10)

Table 4: The complexity of Copelandα-Manipulation for α ∈ Q ∩ (0, 1) \ {0.5}.

Number of candidates (n)

Maximum degree (∆) Vertex cover (vc)

Diversity (d)
Treewidth (tw)

Feedback vertex set (fvs) Pathwidth (pw)

Figure 1: A Hasse diagram depicting the relationship between the various parameters (refer
to Section 2.7 for relevant definitions). Each arrow is directed from a smaller parameter to a
larger one. The implications for parameterized tractability (FPT, XP) propagate upwards along
the figure in the direction of the arrows, while intractability (W-hardness) propagates in the
opposite direction.
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Vertex cover Pathwidth Feedback vertex set Treewidth ∅

FPT W[1]-hard and XP
Diversity

(Theorem 18) (Theorem 15 and Corollary 17)

Max degree FPT (Corollary 17)

para-NP-complete

(Theorem 5)

∅ para-NP-complete (Theorem 14)

Table 5: Parameterized complexity results for pBorda-Manipulation under the conditions
specified by the corresponding combination of parameters. The notation ∅ is used to enable
the consideration of singleton parameters. Merged cells indicate combined parameters (refer
to Section 2.7 for relevant definitions). Notice that the columns ‘vertex cover’ and ’feedback
vertex set’ indicate the sizes of the minimum vertex cover and the minimum feedback vertex set
respectively, and not the sets themselves.

A

B C

2

1
1

1

0

1

(a) An election instance

A B C

pBorda 1/2 + 2/3 1/2 + 1 1/3 + 0

Copeland0 0+1 0 + 1 0 + 0

Outdegree 1+2 1 + 1 1 + 0

(b) Candidate scores under various voting rules

Figure 2: This figure illustrates an election instance for which the winning candidate is decided
according to the various pairwise voting rules defined in Section 2.1. Subfigure (a) depicts the
election instance as a multigraph, where each vertex represents a candidate, and each dashed,
directed edge represents a strict pairwise comparison. Thus, for instance, an edge from A
to C denotes the pairwise comparison A�C by some voter. The numbers alongside the edges
denote the number of voters with that preference (e.g., two voters vote A�C while one voter
votes C�A). Subfigure (b) lists the scores of the candidates under the pBorda, Copeland0 and
Outdegree rules (under the tie-breaking rule A�B�C). The winner’s score for each voting rule
is highlighted in boldface.

1. Pairwise Borda rule or pBorda (Rajkumar and Agarwal, 2014): The pBorda score of
candidate i under the preference profile Π is given by

spBorda
i (Π) =

n∑
j=1

mij(Π)

mij(Π) +mji(Π)

where we adopt the convention 0/0 = 0. Note that this rule is equivalent to the standard
Borda count rule (Arrow et al., 2010) when all the votes are provided as complete rankings
over the set of candidates.

2. Copelandα rule (Faliszewski et al., 2008): The Copelandα score of candidate i (for any
rational α ∈ [0, 1]) under the preference profile Π is given by

sCopelandα

i (Π) =

n∑
j=1

[mij(Π) > mji(Π)] + α · [mij(Π) = mji(Π)],

where [·] once again denotes the Iverson bracket.

3. Outdegree rule: This rule provides another way of generalizing the standard Borda count
rule to the domain of pairwise preferences. The Outdegree score of candidate i under the
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preference profile Π is given by

sOutdeg
i (Π) =

n∑
j=1

mij(Π).

Other examples of pairwise voting rules include PageRank (Brin and Page, 2012), HodgeR-
ank (Jiang et al., 2011), Ranked Pairs and Schulze’s rule (Parkes and Xia, 2012). Figure 2
instantiates the pairwise voting rules defined above on a small election instance. Notice that
any standard voting rule defined over the domain of rankings can in principle be extended to
the domain of pairwise preferences.

2.2 Manipulation of Pairwise Voting Rules

The focus of this paper is on manipulation problems involving a single manipulator, who has
complete information3 about the votes of all the other voters (called the non-manipulators).
Formally, a pairwise voting rule r is said to be manipulable if there exists a pair of pro-
files Π = (�u1 , . . . ,�um−1 ,�um) ∈ Rm and Π′ = (�u1 , . . . ,�um−1 ,�′um) ∈ Rm differing only in
the preference of voter um such that r(Π′)�um r(Π). That is, voter um (called the manipulator)
strictly prefers the new outcome over the old one according to its old preference �um .

Given a pairwise voting rule r, we refer to the computational problem faced by the ma-
nipulator as r-Manipulation, which is defined below. Our formulation of r-Manipulation
problem involves two additional notions that are central to this work—the action space A and
the preference type pref-type. The action space A ⊆

(
[n]
2

)
refers to the pairs of candidates

that the manipulator is allowed to compare.4 Stated differently, the manipulator is not allowed
to compare any pair of candidates outside of A. The parameter pref-type specifies whether
the preferences of the manipulator over A are required to be total (i.e., the manipulator must
provide strict comparisons for all candidate pairs in A), acyclic (i.e., directed cycles of the
form 1� 2, 2� 3, 3� 1 are not allowed), total+acyclic (both total and acyclic) or unrestricted
(no such restriction).

r-Manipulation

Input: A tuple 〈Π, i∗,A, pref-type〉, where Π ∈ Rm−1 is the pref-
erence profile of the non-manipulators (u1, . . . , um−1), i

∗ ∈ [n]
is the distinguished candidate, A ⊆

(
[n]
2

)
is the set of pair-

wise comparisons that the manipulator is allowed to make, and
pref-type ∈ {total+acyclic, total, acyclic, unrestricted} is the pref-
erence constraint with respect to A.

Question: Does there exist a vote �um over A satisfying pref-type such
that r (Π ∪ {�um}) = i∗?

The parameters A and pref-type together capture a rich variety of preference models. For
example, when A = complete graph and pref-type = total+acyclic, we recover the standard
manipulation problem where the manipulator is required to provide a complete ranking of the
candidates.5 When A = complete graph and pref-type = total, the manipulator is required
to come up with a tournament vote, which generalizes the standard setting by relaxing the

3A detailed discussion on the complete information assumption can be found in the work of Hemaspaandra
et al. (2007). The authors thank an anonymous reviewer for the pointer.

4This is not to be confused with the term “strategy space” often used in game theory.
5A technical difference from the standard setting is that unlike in the standard setting, we do not require the

votes of the non-manipulators to be rankings.
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A

B C

7/6

3/2 1/3

2

1

1

1

0

1

(a) Before manipulation

A

B C

17/12

4/3 1/4

3

1

1

2

0

1

(b) After manipulation

A

B C

5/4

3/2 1/4

AA

C

3

1

1

1

0

1

(c) After restricted manipulation

Figure 3: An illustration of the election instance in Example 1. Subfigure (a) shows the same
election instance as in Figure 2, where each vertex of the multigraph represents a candidate,
and each dashed, directed edge represents a strict pairwise comparison. The numbers alongside
the edges denote the number of non-manipulators with that preference. The pBorda scores
of the candidates are mentioned next to the corresponding vertices, and the winner’s score is
highlighted in boldface. Subfigure (b) shows the pairwise comparisons made by the manipulator
as solid edges (notice that the count of voters with that preference goes up by one). Subfigure
(c) shows the restricted action space of the manipulator (A = {{A,C}}) as shaded in grey.

transitivity constraint. Similarly, the setting where A = complete graph and pref-type =
transitive (i.e., requiring i� k whenever i� j and j� k) corresponds to a partial order vote
of the manipulator. Finally, when A = complete graph and pref-type = acyclic, we further
relax the partial order requirement by allowing the manipulator to skip a comparison between
candidates 1 and 3 while allowing for 1� 2 and 2� 3.

We refer to the instantiation of r-Manipulation for pBorda rule (respectively Copelandα)
as pBorda-Manipulation (respectively Copelandα-Manipulation). We will assume through-
out that ties are broken in favor of the manipulator. That is, in order to make the distinguished
candidate i∗ win the election, the manipulator only needs to ensure that i∗ is one of the highest
scoring candidates.

Example 1 illustrates the role of the action space A in the manipulation problem.

Example 1 (The role of the action space A). Consider an election setting with three candidates
A, B and C, with the votes of non-manipulators as shown in Figure 3a. The initial pBorda
scores of these candidates are 7/6, 3/2 and 1/3 respectively, making B the pBorda winner.
Let the favorite candidate of the manipulator be A. Observe that if the manipulator votes
{A�B,A�C} (as shown in Figure 3b), the new pBorda scores will be 17/12, 4/3 and 1/4,
and the manipulator will be able to make A the winner. Thus, the given pBorda-Manipulation
instance admits a feasible solution when A = {{A,B}, {A,C}} or A = {{A,B}, {A,C}, {B,C}}
and pref-type = unrestricted. However, if the manipulator is only allowed to compare the
candidates A and C (i.e., A = {{A,C}}), then despite voting in favor of A, the manipulator
cannot make A win (Figure 3c). Thus, there is no feasible solution to the given pBorda-
Manipulation instance when A = {{A,C}} and pref-type = unrestricted. It is easy to see
that the above observations continue to hold when pref-type ∈ {total, acyclic, total+acyclic}.

A note on the formulation of action space: The idea of using the action space A to
restrict the vote of the manipulator is a novel contribution of this paper and has not been pre-
viously studied to the best of our knowledge. Formulating the manipulation problem in terms
of a general action space A (instead of implicitly working with A = complete graph) offers
two advantages: First, with the benefit of hindsight, we know that by varying the structure
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of the action space A, we can cover the entire spectrum of the computational complexity of
the manipulation problem—both in terms of classical (Table 1) and parameterized (Table 5)
complexity. Second, the concept of action space is also interesting from the viewpoint of elici-
tation. Indeed, as our results demonstrate (Table 1), requiring the voters to compare all O(n2)
pairs is computationally resistant to manipulation, but might be infeasible in practice due to
high elicitation cost. On the other hand, eliciting comparisons over tree-structured pairs re-
quires only O(n) elicitations but is susceptible to manipulation. Therefore, considering other
action spaces such as bipartite graphs allows for “the best of both worlds,” i.e., computational
resistance to manipulation with small elicitation cost.

2.3 Vote Configuration

We will often use the shorthand a : b (for non-negative integers a, b) for an ordered pair of
candidates (i, j) to denote that a voters vote i� j while b other voters vote j� i. We will refer
to a : b as the vote configuration between i and j. Thus, for instance, in Figure 3a, the candidate
pair (A,C) is in 2 : 1 configuration.

2.4 Score Transfer Property of the pBorda Rule

An intriguing property of the pBorda rule that will be useful in our proofs is the following:
For any given pair of candidates (i, j), the increase in pBorda score of i due to a vote i� j of
the manipulator is equal to the decrease in pBorda score of j. As an example of this, consider
the election instance in Figure 3a, consisting entirely of non-manipulators’ votes. Suppose the
manipulator votes A�C, resulting in the instance in Figure 3c. The pBorda score of A increases
by 5

4 −
7
6 = 1

12 , while that of C decreases by 1
3 −

1
4 = 1

12 , which are equal.
It is easy to show that this is true in general. Indeed, consider an election instance where

the pair (i, j) is in mij : mji configuration. Let us assume for simplicity that there is no other
candidate in the election. The current pBorda scores of i and j are therefore

mij
mij+mji

and
mji

mij+mji
respectively. Let us now add the vote i� j of the manipulator. The new pBorda score of i is

mij+1
mij+mji+1 , meaning that its score increases by

mji
(mij+mji)(mij+mji+1) . The new pBorda score of

j is
mji

mij+mji+1 , meaning that its score decreases by the same amount, i.e.,
mji

(mij+mji)(mij+mji+1) .

This property holds for all candidate pairs for which mij +mji 6= 0.
Thus, the change in the pBorda scores of the candidates due to the manipulator’s vote

can be described in terms of a score transfer. This is the amount of pBorda score that gets
transferred from j to i when the manipulator votes i� j. If the manipulator skips the com-
parison, the pBorda scores stay unchanged and no score transfer takes place. Define a score
transfer vector as a tuple of score transfers due to the votes i� j, skip or j� i of the manipu-
lator. Thus, for instance, the score transfer vector for the candidate pair (A,C) in Figure 3a is[(

+ 1
12 ,−

1
12

)
, (0, 0),

(
−1

6 ,+
1
6

)]
.

Notice that the score transfer property described above is specific to the pBorda rule, and
does not hold in general for other pairwise voting rules like Copelandα. For instance, consider
a Copelandα election instance with α = 0, where the pair (i, j) is in 1:0 configuration and the
manipulator votes j� i. In this case, the score of i decreases by 1, while the score of j stays
the same.

2.5 Excess Scores

The excess score of a candidate i refers to the amount by which the score of i exceeds the score
of the distinguished candidate i∗ in a given election instance. For example, in Figure 3c in Sec-
tion 2.2, the excess pBorda scores of the candidates B and C (with respect to the distinguished
candidate A) are 1/4 and −1 respectively. Hence, r-Manipulation for a score-based voting
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rule r can be restated as deciding whether there exists a vote for the manipulator such that the
final excess scores of all candidates are zero or less.

2.6 Parameterized Complexity

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first component Q is a
classical language and the second component k is a number (called the parameter). Such a
problem is called fixed–parameter tractable (FPT) if there exists an algorithm that decides it in
time O(f(k)nO(1)) on instances of size n for some computable function f : N→ N.

Just as NP-hardness is used as evidence that a problem probably is not polynomial-time
solvable, there exists a hierarchy of complexity classes above FPT, and showing that a pa-
rameterized problem is hard for one of these classes is considered evidence that the problem
is unlikely to be fixed-parameter tractable with respect to the corresponding parameter. The
main classes in this hierarchy are

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ XP,

where a parameterized problem belongs to the class XP if there exists an algorithm for it with
running time bounded by ng(k) for some computable function g : N→ N. A detailed introduction
to parameterized complexity theory can be found in the standard texts by Downey and Fellows
(1999); Flum and Grohe (2006); Niedermeier (2006) and Cygan et al. (2015).

A parameterized problem is said to be para-NP-complete if it is NP-complete even for
constant values of the parameter. A classic example of a para-NP-complete problem is Graph
Coloring parameterized by the number of colors (Garey and Johnson, 1979)—recall that it is
NP-complete to determine if a graph can be properly colored with three colors. Observe that a
para-NP-complete problem does not belong to XP unless P = NP .

For any pair of parameterized problems A and B, we say that A is (uniformly many:1)
FPT-reducible to B if there exists an algorithm Φ that transforms an instance (x, k) of A into
an instance (x′, k′) of B such that

• (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

• k′ ≤ g(k) for some computable function g, and

• the running time of Φ is f(k) · |x|O(1) for some computable function f : N→ N (where |x|
denotes the size of the input).

A convenient way of showing that a problem is W[1]-hard is via an FPT reduction from a
known W[1]-hard problem. Hence, in the above definition, if the problem A is known to be
W[1]-hard in parameter k and there exists an FPT reduction from A to B, then B is W[1]-hard
in the parameter g(k).

A note on the use of combined parameters: When working with multiple parame-
ters k1, k2, . . . , kr associated with a given problem, we will think of the combined parameter k
as being given by k = κ(k1, k2, . . . , kr), where κ : Nr → N is a fixed, computable function.
The standard notions of parameterized running time (such as FPT, XP ) extend naturally to
this case. For instance, we will say that a parameterized problem is FPT when simultaneously
parameterized by k1, k2, . . . , kr if, for some fixed, computable function κ : Nr → N, there exists
an algorithm that decides it in time O(f(k)nO(1)) on instances of size n, where f : N → N is
some computable function and k = κ(k1, k2, . . . , kr). Similarly, we will say that a parameter-
ized problem is in XP when simultaneously parameterized by k1, k2, . . . , kr if, for some fixed,
computable function κ : Nr → N, there exists an algorithm that decides it in time O(ng(k)) on
instances of size n, where g : N → N is some computable function and k = κ(k1, k2, . . . , kr).
Finally, for any pair of parameterized problems A and B, where A is parameterized by k and B
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is simultaneously parameterized by k1, . . . , kr, we will say that A is (uniformly many:1) FPT-
reducible to B if there exists an algorithm Φ that transforms an instance (x, k) of A into an
instance (x′, k1, . . . , kr) of B such that

• (x, k) is a yes-instance of A if and only if (x′, k1, . . . , kr) is a yes-instance of B,

• κ(k1, k2, . . . , kr) ≤ g(k) for some computable functions κ : Nr → N and g : N→ N, and

• the running time of Φ is f(k) · |x|O(1) for some computable function f : N→ N.

2.7 Parameters Used in This Work

We will now define the various parameters used in our parameterized complexity results. We
will assume throughout that G = (V,E) denotes a simple undirected graph, unless explicitly
stated otherwise.

Maximum degree (∆): The maximum degree of a graph G is the maximum number of edges
incident to any vertex of G.

Vertex cover (vc): A set of vertices V ′ ⊆ V is a vertex cover of G if for every edge (u, v) ∈ E,
either u ∈ V ′ or v ∈ V ′ or both. Throughout the paper, we will use the phrase “parameterized
by vertex cover” to refer to the parameterization with respect to the size of a minimum vertex
cover (and not the set itself).

Feedback vertex set (fvs): A feedback vertex set of a graph is a set of vertices whose removal
makes the graph acyclic. Throughout the paper, we will use the phrase “parameterized by
feedback vertex set” to refer to the parameterization with respect to the size of a minimum
feedback vertex set (and not the set itself).

Tree decomposition: A tree decomposition of a graph G is a tuple T = (T, {Bt}t∈V (T ))
where T is a tree, V (T ) is the vertex set of T , and each node t of T is assigned a set of
vertices Bt ⊆ V (called a bag) such that the following hold:

1. For each vertex v ∈ V , there exists a node t of T such that v ∈ Bt. In other
words, ∪t∈V (T )Bt = V .

2. For each edge (u, v) ∈ E, there exists a node t such that u ∈ Bt and v ∈ Bt.

3. For each vertex v ∈ V , the set of nodes {t ∈ V (T ) : v ∈ Bt} forms a connected subtree
of T .

The width of a tree decomposition T = (T, {Bt}t∈V (T )) equals maxt∈V (T ) |Bt| − 1 (i.e., size of
the largest bag minus one). The treewidth (tw) of a graph G is the minimum possible width of
a tree decomposition of G.

Nice tree decomposition: A tree decomposition T = (T, {Bt}t∈V (T )) is nice if T is a rooted
binary tree (with root node r) and the following conditions hold:

1. The root node and all leaf nodes correspond to empty bags (i.e., Br = ∅ and B` = ∅ for
every leaf ` of T ).

2. Each non-leaf node of T is of one of the following three types:

• Introduce node: a node t with exactly one child t′ such that Bt = Bt′ ∪ {v} for some
vertex v ∈ V . We say that v is introduced at node t.

• Forget node: a node t with exactly one child t′ such that Bt = Bt′ \ {v} for some
vertex v ∈ V . We say that v is forgotten at node t.

• Join node: a node t with exactly two children t1, t2 such that Bt = Bt1 = Bt2 .
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The notions of pathwidth (pw), path decomposition and nice path decomposition are defined
analogously in terms of paths (instead of trees).

We will implicitly assume in all our algorithmic results that the parameter of interest (e.g.,
size of a minimum vertex cover of A or the treewidth of a nice tree decomposition of A) is
provided as an input along with the graph A, and our algorithms are designed to work directly
on these inputs. This is without loss of generality, since the overall running time in these
situations is dominated by the procedures that make use of these inputs and not the procedures
that compute these parameters from a given graph (Chen et al., 2010; Bodlaender et al., 2013).

In addition to the above-mentioned parameters, we introduce a new structural parameter
called diversity, as defined below.

Definition 1. Diversity (d): The diversity of the action space A (with respect to an
underlying preference profile Π of non-manipulators’ votes) is defined as the maximum number
of distinct score transfers that a candidate can experience due to a single pairwise comparison
made by the manipulator. As an example, consider the election instance shown in Figure 3a in
Section 2.2, and consider the candidate A in particular. Assuming that A = complete graph, the
manipulator is free to compare any of the pairs {A,B}, {B,C} or {C,A}. If the manipulator
compares the pair {A,B}, then the pBorda-score of candidate A can change by +1/6, 0 or −1/6
respectively, depending on whether the manipulator votes A�B, ‘skip’ or B�A. This can be
concisely represented as a vector (+1/6, 0,−1/6), called the score transfer vector for A from
the pair (A,B). Similarly, the score transfer vectors for candidate A from the pairs (A,C) and
(B,C) are (+1/12, 0,−1/6) and (0, 0, 0) respectively. Since there are three such distinct vectors,
the diversity for candidate A is three. The diversity of an instance is the maximum diversity
for any candidate. Notice that the diversity of an election instance can depend crucially on the
pairwise voting rule. Indeed, the diversity under the pBorda rule can be as large as n−1, while
the same for Copelandα is O(1) due to the limited types of score exchanges permitted under
the definition of the Copeland voting rule. It is easy to see that for any pairwise voting rule
where a pairwise comparison by the manipulator can only affect the scores of the two candidates
involved—examples include pBorda and Copelandα—diversity is at most the maximum degree,
i.e., d ≤ ∆.

2.8 Elimination Problem in Sports

The sports elimination problem (Schwartz, 1966) asks the following question: Given the current
scores of all teams and the set of games remaining to be played in a sports competition, is it
possible for a team i∗ to still win the competition? As we will see, this problem turns out
to be intimately connected with the manipulation problem described earlier. Formally, let
[N ] = {1, 2, . . . , N} be the set of N teams and si ∈ R denote the current score of team i ∈ [N ].
Let G ⊆

(
[N ]
2

)
denote the set of remaining games between pairs of teams (played according to

some predefined schedule). The points awarded to each team based on the outcome of the game
(e.g., home win, draw or away win) are given by a scoring system S, defined as follows:

Definition 2. Scoring System: A scoring system S is a tuple of ordered pairs of rational
numbers [(α1, β1), (α2, β2), . . . , (αt, βt)] where the subscripts 1, 2, . . . , t correspond to the out-
comes of games, and the first and second entries of each pair (denoted by α and β) correspond
to the points awarded respectively to the home and away team under that outcome.

Example 2. A popular example of a scoring system is the one used by several football leagues
in Europe. Each national league typically consists of 20 teams, and each pair of teams play two
games against each other during the season—one home and one away. The winner in each game
is awarded 3 points, while the losing team does not get any points. In case of a draw, both teams
get a point each. Thus, the European football scoring system is given by S1 = [(3, 0), (1, 1), (0, 3)],
where t = 3. A variant of the above system can be S2 = [(3, 0), (1, 2), (0, 3)] where the away
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team gets an extra point under a draw. Another example is the baseball scoring system S3 =
[(1, 0), (0, 1)], which only admits win-loss outcomes (and thus t = 2).

Given the vector of current scores s = (s1, s2, . . . , sN )T and the set of games G to be played
between pairs of teams, the question “can team i∗ still win the competition?” can be formalized
as the following computational problem called S-Elimination (Kern and Paulusma, 2004):

S-Elimination

Input: A tuple 〈s, i∗,G〉, where s = (s1, s2, . . . , sN )T is the vector of current
scores of the N teams, i∗ ∈ [N ] is the distinguished team and G ⊆(
[N ]
2

)
is the set of remaining games between the teams.

Question: Does there exist an assignment of outcomes for the games in G such
that i∗ ends up with the (joint) highest overall score among all teams
under the scoring system S?

Specifically, Kern and Paulusma (2004) consider a special case of the above problem where
the distinguished team i∗ has no remaining games (in other words, the score of i∗ is frozen).
They refer to this variant as partial sports competition problem (PSC). In our work, we will use
the term S-Elimination to refer to the PSC problem.

Theorem 1 (Kern and Paulusma, 2004). Let S = [(α1, β1), . . . , (αt, βt)] be a scoring system
satisfying α1 > · · · > αt−1 = 1 > αt = 0 and 0 = β1 < 1 ≤ β2 < · · · < βt for some t ∈ N. Then,
S-Elimination is efficiently solvable if S = {(t − 1 − i, i) : 0 ≤ i ≤ t − 1}. In all other cases,
the problem is NP-complete.

Thus, for instance, S-Elimination is efficiently solvable for the baseball scoring system
S3 = [(1, 0), (0, 1)], but is computationally intractable for the European football scoring system
S1 = [(3, 0), (1, 1), (0, 3)], or its variant S2 = [(3, 0), (1, 2), (0, 3)].

It is worth pointing out that the assumptions about the scoring system S stated in Theorem 1
are without loss of generality since any given instance of S-Elimination can be transformed
into an equivalent instance that satisfies these assumptions. This observation follows from the
normalization scheme of Kern and Paulusma (2004), which we recall below.

2.9 Normalization Scheme

The normalization scheme of Kern and Paulusma (2004) is a set of affine operations that can be
used to transform a given instance of S-Elimination into an equivalent instance that satisfies
the conditions of Theorem 1 such that the two instances have identical solutions. The scheme
consists of the following three steps (see Section 4 of Kern and Paulusma, 2004):

1. Discarding dominated outcomes: Given S = [(α1, β1), (α2, β2), . . . , (αt, βt)] where αi, βi ∈ Q
for all i ∈ [t] for some t ∈ N, we can assume, without loss of generality, that no ordered
pair (αi, βi) occurs more than once in S. Similarly, for any two distinct ordered pairs (αi, βi)
and (αj , βj), we can assume, without loss of generality, that either (i) αi < αj and βi > βj
or (ii) αi > αj and βi < βj . This is because of the following reason: For any remaining game
between teams other than i∗, if αi ≤ αj and βi ≤ βj , then the outcome (αi, βi) is no worse
than the outcome (αj , βj) from the viewpoint of i∗, and therefore it is safe to discard the
latter. We will also assume, again without loss of generality, that S satisfies β1 < β2 < · · · <
βt, which in turn implies that α1 > α2 > · · · > αt.

2. Translation step: We now modify the given S-Elimination instance with
S = [(α1, β1), (α2, β2), . . . , (αt, βt)] from step 1 to obtain an instance with
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Figure 4: An illustration of the application of the normalization scheme. Subfigure (a) shows
the given S-Elimination instance. Subfigures (b) and (c) show the same instance after the
translation and scaling steps respectively. In each case, the score of the winning team is high-
lighted in boldface.

S′ = [(α′1, β
′
1), (α

′
2, β
′
2), . . . , (α

′
t, β
′
t)], where α′i = αi − αt and β′i = βi − β1 for all i ∈ [t]. That

is, we use a translation operation to make all entries in S′ non-negative. In order to preserve
the equivalence of the two instances of S-Elimination before and after the translation, we
need to compensate each team for the loss in score that it might incur in the remaining
games due to the modified scoring system. We do this by awarding, for each remaining
game in G, αt and β1 points to each home and away team respectively. That is, for each
i ∈ [N ] \ {i∗}, s′i = si + Hi · αt + Ai · β1, where Hi and Ai are the number of games in G
where i is the home and the away team respectively.

3. Scaling step: The final step in the normalization scheme consists of scaling down the mod-
ified scores of all teams s′ and the entries of the modified scoring system S′ by αt−1 (recall
that αt−1 > 0). This step is without loss of generality, since the new problem can be seen
as measuring the score values in the units of αt−1. The new instance of S-Elimination
has team scores s′′, where s′′i = s′i/αt−1 for each i ∈ [N ], and a new scoring system
S′′ = [(α′′1, 0), (α′′2, β

′′
2 ), . . . , (1, β′′t−1), (0, β

′′
t )] where α′′i = α′i/αt−1 for 1 ≤ i ≤ t − 2 and

β′′j = β′j/αt−1 for 2 ≤ j ≤ t. Notice that if β′2 ≥ αt−1 (i.e., if β′′2 ≥ 1), then S′′ already
satisfies the conditions of Theorem 1. On the other hand, if β′2 < αt−1, then we can repeat
the steps 1-3 of the normalization scheme by swapping the home and away labels for each
remaining game and swapping the corresponding scoring system values (i.e., exchanging αi’s
with βi’s) while keeping the individual team scores intact.

Example 3 illustrates the above procedure applied to the toy instance in Figure 4.

Example 3. Consider the S-Elimination instance shown in Figure 4a. There
are three teams A, B and C with initial scores 2/3, 4/3 and 1 respectively, and
S = [(1/6,−1/6), (0, 0), (−1/12, 1/12)]. Note that S does not satisfy the conditions required
by Theorem 1 to begin with. Since S does not contain any dominated outcomes, we move
to the translation step of the above scheme (step 2). For each remaining game, the home
and away teams are awarded −1/12 and −1/6 points respectively, resulting in the new scoring
system S′ = [(3/12, 0), (1/12, 2/12), (0, 3/12)] and the updated team scores, as shown in Fig-
ure 4b. Finally, scaling down all teams scores and scoring system entries by 1/12 (according
to step 3) results in the S-Elimination instance shown in Figure 4c. The new scoring system
S′′ = [(3, 0), (1, 2), (0, 3)] indeed satisfies the conditions in Theorem 1.
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2.10 Some Useful Computational Problems

We will now describe some well-known computational problems that will find use in our reduc-
tions.

• 3-dimensional Matching:

The problem of 3-D Matching can informally be stated as follows: Suppose we are given
the following three sets of equal cardinality: a set of men, a set of women and a set of
pets. Suppose we are also given a set of compatible triples of men, women, and pets. Does
there exist a set of compatible triples such that each man, woman and pet is chosen in
exactly one triple?

3-D Matching

Input: A tuple 〈W,X, Y,R〉, where W,X, Y are disjoint sets each of
size q and R ⊆W ×X × Y is a set of triples.

Question: Does there exist a subset R′ ⊆ R such that R′ covers W ∪X ∪Y
exactly (i.e., each w ∈W , x ∈ X, and y ∈ Y is present in exactly
one triple in R′)?

3-D Matching is known to be NP-complete even when each element of the sets W,X, Y
occurs in at most three triples in R (Garey and Johnson, 1979, Problem SP1 on page 221).6

• Capacitated Dominating Set:

Given a graph G = (V,E), a set V ′ ⊆ V is a Capacitated Dominating Set if there exists
an assignment f : V \ V ′ → V ′ that maps each vertex in V \ V ′ to a neighboring vertex
in V ′ such that no vertex in V ′ is assigned to more neighbors than its capacity.

Capacitated Dominating Set

Input: A triple 〈G, c, k〉, where G = (V,E) is a graph, c : V → N is a
capacity function for the vertices of G and k is a positive integer.

Question: Does there exist a set of vertices V ′ ⊆ V of size at most k such
that each vertex v ∈ V \ V ′ can be assigned to some adjacent
vertex v′ ∈ V ′, and no vertex v′ ∈ V ′ is assigned more than c(v′)
vertices?

Capacitated Dominating Set is known to be W[1]-hard when simultaneously param-
eterized by the treewidth and the solution size k (Dom et al., 2008). In fact, the problem
remains W[1]-hard when simultaneously parameterized by the pathwidth and the feedback
vertex set, even on instances with only a constant number of distinct capacities.7

6A previous version of this paper (Vaish et al., 2016) incorrectly claimed that 3-D Matching continues to
be NP-complete even when each element of W,X, Y occurs in exactly two triples in R. We fix this issue in this
paper by proving the same results starting from the variant of 3-D Matching where each element of W,X, Y
occurs in at most three triples in R—this variant is indeed known to be NP-complete (Garey and Johnson, 1979,
Problem SP1 on page 221). The authors thank an anonymous reviewer for pointing this out.

7Dom et al. (2008) show W[1]-hardness of Capacitated Dominating Set via a reduction from Multicol-
ored Clique on general graphs. By carrying out their reduction starting instead from Multicolored Clique
on regular graphs—which is also W[1]-hard (Cygan et al., 2015)—it is easy to observe that the parameters path-
width, treewidth and the size of a minimum feedback vertex set of the reduced Capacitated Dominating Set
instance are all O(k4) in size, where k is the solution size.
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• Partition:

Given a multiset S of natural numbers, Partition asks whether there exists a way to di-
vide S into two disjoint parts with equal sums. For example, given S = {1, 1, 1, 2, 2, 3, 3, 5},
the sets S1 = {1, 1, 1, 3, 3} and S2 = {2, 2, 5} constitute a valid partition (i.e., S1 ∩ S2 = ∅
and S1 ∪ S2 = S).

Partition

Input: A multiset S = {a1, a2, . . . , an} of n positive integers.

Question: Does there exist a partition of S into two subsets S1 and S2 such
that

∑
ai∈S1

ai =
∑

aj∈S2
aj = 1

2

∑
ak∈S ak?

Partition is known to be NP-complete (Garey and Johnson, 1979, Problem SP12 on
page 223). We assume, without loss of generality, that a1 ≤ a2 ≤ · · · ≤ an.

• Integer Linear Programming:

Given a pair of integer matrices 〈A,b〉 where A ∈ Zp×q and b ∈ Zq×1, Integer Linear
Programming asks whether there exists x ∈ Zq×1 satisfying A · x 4 b. Here 4 denotes
the ‘component-wise less than or equal to’ relation.

Integer Linear Programming

Input: A pair of matrices 〈A,b〉 where A ∈ Zp×q and b ∈ Zq×1 are
integer matrices, and p, q are natural numbers.

Question: Does A · x 4 b admit a solution x ∈ Zq×1?

Integer Linear Programming is known to be FPT when parameterized by the number
of variables q (Lenstra Jr, 1983).

3 Related Work

In this section, we review some of the related literature on other approaches for dealing with
incomplete preferences and on the parameterized studies of the manipulation problem.

• Possible and necessary winners: A common approach for dealing with incomplete pref-
erences in the computational social choice literature is by modifying the notion of an
election winner to accommodate sets of winners. Given an incomplete preference profile
and a standard (ranking-based) voting rule, the set of possible/necessary winners is the
set of all candidates that can win the election under some/every completion of the pref-
erences (Konczak and Lang, 2005; Walsh, 2007; Betzler and Dorn, 2010; Pini et al., 2011;
Xia and Conitzer, 2011; Baumeister and Rothe, 2012; Gaspers et al., 2014). Manipulating
a voting rule in this context means making a distinguished candidate a possible/necessary
winner, given the (incomplete) preferences of the non-manipulators. A distinguishing
feature of pairwise voting rules (such as pBorda and Copelandα) is that they deal with
incomplete preferences directly without the need for extending each incomplete vote.

Outside the realm of elections, the work of Aziz et al. (2015) on determining possible
and necessary winners in partial tournaments closely relates to our formulation of the
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manipulation problem. A partial tournament refers to an asymmetric directed graph that
is not necessarily complete. The problem of finding a possible/necessary winner for such a
graph involves checking whether a specific vertex can be made the winner (according to a
given tournament solution) under some/every completion of this graph. In our framework,
this corresponds to the manipulation problem with a single non-manipulator who compares
some of the candidate pairs and skips the rest. The action space of the manipulator is
precisely the set of pairs skipped by the non-manipulator. The question of whether the
manipulator can come up with a vote that makes a distinguished candidate v win the
election corresponds exactly to whether v is a possible winner in the partial tournament.
This way, our model strictly generalizes that of partial tournaments. It is also easy to see
that weighted partial tournaments—which are partially specified multigraphs—correspond
to the coalitional manipulation question in our setting.

More specifically, the tournament solutions studied by Aziz et al. (2015) that are of di-
rect relevance to our work are (a) Copeland winners for the unweighted setting, and (b)
Borda winners for the weighted setting. For (a), Aziz et al. (2015) show that possible and
necessary Copeland-winner problems are efficiently solvable for partial unweighted tourna-
ments. In our framework, this corresponds to the constructive and destructive variants of
Copeland0-Manipulation problem with a single non-manipulator, where the action space
of the manipulator is the set of all comparisons that are skipped by the non-manipulator
and pref-type = total. This is clearly a special case of our results (Table 2), since we
show that the tractability results extend to any given number of non-manipulators, any
action space and any choice of pref-type.

For (b), Aziz et al. (2015) show that the problem of determining possible and necessary
Borda-winners is efficiently solvable in the weighted setting. Their definition of a Borda-
winner, however, corresponds to a candidate with the highest outdegree (i.e., a candidate
that wins the maximum number of pairwise comparisons). As a result, a Borda-winner in
their model might differ from a pBorda winner (Figure 2 in Section 2.1 is an example of
this), which precludes a comparison between the two sets of results.

• Modifying standard voting rules: A growing body of work (Baumeister et al., 2012; Naro-
dytska and Walsh, 2014; Fitzsimmons and Hemaspaandra, 2015; Menon and Larson, 2017)
has studied modifications of standard voting rules to deal with partial preferences that
are specified as either top-truncated ballots or rankings with ties. A top-truncated ballot
refers to a partial ranking where each ranked candidate is assumed to be preferred over
all the unranked ones. Voting rules that aggregate such preferences were studied by Nar-
odytska and Walsh (2014) in the context of the manipulation problem. Their results
were later generalized to a larger class of voting rules (Menon and Larson, 2017), to votes
with ties (Fitzsimmons and Hemaspaandra, 2015), and to structured preferences such as
single-peaked and nearly single-peaked domains (Menon and Larson, 2017). Nearly all
the voting rules used in these studies are positional, meaning the score of a candidate
depends on its position or rank in each vote. Such rules, however, cannot be immediately
generalized to work with pairwise preferences since the position of a candidate in a vote is
often not well-defined. An exception to such rules is the Copelandα family of voting rules,
for which the manipulation problem has been studied in context of weighted votes and
a coalition of manipulators (Narodytska and Walsh, 2014; Fitzsimmons and Hemaspaan-
dra, 2015; Menon and Larson, 2017). Even here, a direct comparison with our setting is
not possible since these papers study a more general problem than ours (namely, coali-
tional manipulation with weighted votes) over a strict sub-domain of pairwise preferences
(namely, top-truncated ballots).

• Parameterized complexity of manipulation problems: Parameterized complexity analysis
has proven extremely useful in scrutinizing the computational behavior of a variety of
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problems in computational social choice, such as

– winner determination (Bartholdi III et al., 1989a; Betzler et al., 2009a; Fellows et al.,
2010; Betzler et al., 2010, 2013),

– manipulation (Conitzer et al., 2007; Betzler et al., 2011; Yang, 2014; Xia, 2014; Yang,
2015; Yang and Guo, 2016),

– bribery (Dorn and Schlotter, 2012; Wang et al., 2013; Bredereck et al., 2016), and

– possible and necessary winner problems (Betzler et al., 2009b; Xia and Conitzer,
2011; Baumeister et al., 2012).

We refer the reader to detailed surveys on this topic by Lindner and Rothe (2008) and Bet-
zler et al. (2012).

Among the studies on the parameterized complexity of manipulation of standard voting
rules, the works of Faliszewski et al. (2014) and Yang and Guo (2016) are closest to ours
in spirit. Specifically, Faliszewski et al. (2014) study the computational complexity of the
coalitional manipulation problem for weighted veto elections, when all votes are required
to be complete rankings. This problem is known to be NP-complete in general (Hemas-
paandra and Hemaspaandra, 2007) and efficiently solvable when preferences are single-
peaked (Faliszewski et al., 2009a). Faliszewski et al. (2014) show that the tractability
result in fact extends to various generalizations of single-peakedness, such as ‘the number
of voters that are not single-peaked’ (called maverick-voters) or ‘how many pairwise swaps
away is each vote from being single-peaked’.

Similarly, Yang and Guo (2016) show that unweighted Borda manipulation with two ma-
nipulators is efficiently solvable over the domain of single-peaked preferences, although
the problem is known to be NP-complete in the general case (Davies et al., 2014; Betzler
et al., 2011).8 This result was generalized by Yang (2015), who showed that the manipu-
lation problems for the Borda and Copelandα rules by two manipulators are FPT in the
parameter single-peaked width.

4 Our Results and Techniques

This section presents our axiomatic (Section 4.1), classical complexity-theoretic (Section 4.2)
and parameterized complexity-theoretic results (Section 4.3). We will start with axiomatic
result, which shows that any reasonable pairwise voting rule is susceptible to manipulation.
This is followed by our classical complexity-theoretic results, which show that computational
complexity can provide a promising worst-case shield against the manipulation of the pBorda
and Copelandα rules. Finally, our parameterized complexity results provide a more refined
understanding of such computational protections for the case of the pBorda rule.

4.1 Axiomatic Result

Recall that the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) shows that
any non-dictatorial voting rule over at least three candidates under which each candidate has
some chance of winning is manipulable. In its standard form, this result requires the voter
preferences over the set of candidates to be complete, transitive and unrestricted (i.e., voters
are allowed to pick any possible ranking). Several follow-up works have since then looked into
relaxing one or more of these assumptions: For instance, Sen (2001); Aswal et al. (2003); Sato
(2010) and Pramanik (2015) relax unrestrictedness by studying the minimally rich subsets of

8Recall that Bartholdi III et al. (1989b) showed that the problem of unweighted Borda manipulation by a
single manipulator is efficiently solvable over the domain of rankings.
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the domain of all rankings over which the theorem continues to hold. Similarly, Reffgen (2011)
and Pini et al. (2009) relax the completeness assumption by studying settings where only top-k
choices or partial orders are specified. Extensions of this theorem to voting rules that pick a
set of winners instead of a unique winner have also been studied (Duggan and Schwartz, 2000;
Pini et al., 2009). Our axiomatic result can be seen as belonging to this line of research where
we simultaneously relax the assumptions of transitivity and completeness while allowing for
unrestrictedness (i.e., voters can pick any set of pairwise preferences).

Specifically, we show that even for the domain of pairwise preferences (a strict superset
of the domain of rankings), no reasonable voting rule is non-manipulable. We might expect
this intuitively—indeed, if r is a non-manipulable pairwise voting rule, then the projection of r
to the domain of rankings (i.e., a standard voting rule that is consistent with r) will also be
non-manipulable. However, the projection of a “non-dictatorial” pairwise voting rule r to the
domain of rankings might still turn out to be dictatorial,9 which makes the desired result elusive.

Theorem 2. If there are at least three candidates and at least two voters, then any onto pairwise
voting rule must be manipulable.

Proof. The proof proceeds in four steps: Suppose, for the sake of contradiction, that a given
onto pairwise voting rule r is non-manipulable.

1. Consider a pairwise preference profile Π1 where each vote is a directed cycle of the form
n�n−1, n− 1�n− 2, . . . , 2� 1, 1�n (the remaining comparisons can be set arbitrar-
ily). We require n ≥ 3 for this to be well defined. Let candidate 1 be the winner chosen
according to r for this profile (i.e., r(Π1) = 1).

(Observe that when the true preferences of a voter form a directed cycle, then regardless of
the outcome of the voting rule, there is always some other candidate that the voter would
prefer over the current choice. For instance, in our construction, every voter prefers
candidate 2 over the currently chosen candidate 1.)

2. Starting from the voter u1, sequentially modify the votes of all the voters u1, u2, . . . , um
such that in each vote, candidate 2 beats all other candidates and candidate 1 beats
everyone except for candidate 2. At each stage of this modification process, candidate 1
must remain the election winner (if candidate 2 wins at any stage, then the swing voter has
an incentive to switch to the new vote; if some other candidate i 6= 1, 2 wins, then there
is incentive for the swing voter to switch back to the old vote). Call this new profile Π2.
Hence r(Π2) = 1.

(Notice that the profile Π1 constructed in step 1 already highlights an unsatisfactory aspect
of the voting rule r, which is that the chosen candidate is strictly less preferred to another
candidate by every voter. The profile Π2 constructed in this step further highlights this
problem, in the sense that now there is a candidate that is unanimously preferred by every
voter over every other candidate, and yet the voting rule fails to pick this candidate. As
we will see in steps 3 and 4, along with ontoness, this anomaly of the voting rule will force
the existence of a manipulation.)

3. Ontoness of r implies that there exists a preference profile Π such that r(Π) = 2. By an
argument similar to step 2 above, the profile Π can be transformed into a profile Π3 where
candidate 2 is preferred over every other candidate by each voter and it continues to be
the winner (i.e., r(Π3) = 2). Indeed, if at any point during the transformation from Π
to Π3, the outcome changes to a candidate i 6= 2, then the swing voter has an incentive
to switch back to the old vote.

9An example of this is a pairwise voting rule which picks the favorite candidate of a fixed voter (i.e., a dictator)
whenever all voters provide complete rankings, and picks a more ‘democratic’ option otherwise.
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4. Starting from Π3, sequentially modify the votes to transform it into Π2. At some point
during this process, candidate 2 must lose, providing the incentive for the swing voter to
switch back to the old vote, and thus contradicting the non-manipulability of r.

4.2 Classical Complexity Results

This section presents our results on the computational complexity of manipulation of pBorda
(Section 4.2.1) and Copelandα (Section 4.2.2) voting rules.

4.2.1 Complexity of Manipulating Pairwise Borda

Having established the impossibility result above, we study settings under which computational
complexity can provide a worst-case barrier against manipulation in the setting of pairwise pref-
erences. To this end, we build a comprehensive landscape of the computational complexity of
pBorda-Manipulation for various combinations of possibilities that arise along the two dimen-
sions mentioned earlier, namely (a) the structure of the action space (i.e., A = tree, bipartite,
complete graph), and (b) the preference type (i.e., pref-type = total, acyclic, total+acyclic,
unrestricted) .

Our results show that the manipulation problem turns out to be easy (i.e., polynomial-time
solvable) whenever the graph structure is simple enough (e.g., A = a tree), regardless of the
preference type. However, as we move toward more complex graph structures like bipartite or
complete graphs, requiring either totality or acyclicity (but not both) can lead to computational
intractability (i.e., NP-hardness). Stated differently, our results for the pBorda rule show that
moving away from the standard framework of rankings by relaxing either completeness or tran-
sitivity or both is a promising direction for making the manipulation problem computationally
hard.

Our results for pBorda-Manipulation are summarized in Table 1 in Section 1 and are
stated as Theorems 3, 5, 7 and 8. We start with the easiness-of-manipulation result.

Theorem 3. pBorda-Manipulation is efficiently solvable in the following cases: (a) for any
choice of pref-type when A is a tree, and (b) for any choice of A when pref-type = to-
tal+acyclic.

Proof. We provide separate proofs for the parts (a) and (b) of the theorem.
Case (a): When A induces a tree.
In this case, a manipulative vote (if it exists) can be efficiently computed by a bottom-up

greedy algorithm that starts at the leaves of the tree and forces a safe option for the manipulator.
For example, if a leaf node has a positive excess score, then it must lose the comparison with
its parent in the manipulator’s vote (and if this is not enough, then it is legitimate to abort).
Similarly, if a leaf has negative excess, then it might as well win the comparison with its parent
whenever the score transfer is feasible.

Formally, let A denote both the set of pairwise comparisons that the manipulator is allowed
to make and the tree graph underlying this set. The manipulation algorithm consists of the
following two steps:

1. Start from an arbitrary leaf node v in A (such a node always exists in a tree). Let w
denote the parent of v in A. If v can {win,draw, lose} the pairwise comparison against w
without gaining a positive excess score, in that order, then pick that option. Otherwise
return NO.10

10Note that we can assume, without loss of generality, that the distinguished candidate i∗ wins all its
pairwise comparisons. That is, any winning vote for the manipulator can be transformed into another
(possibly different) winning vote where i∗ wins all its pairwise comparisons. This holds for any choice of
pref-type ∈ {total, acyclic, total+acyclic, unrestricted}. Therefore, i∗ is not a part of the action space, and
the notion of excess score in Step 1 is well-defined.
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2. Remove v and the edge vw from A and repeat step 1 starting from another leaf node.
This process continues until all comparisons in A have been considered.

We will now discuss the computational complexity and correctness of the above algorithm.
Running Time: The algorithm involves O(logm) computation at each edge,

thus O(|A| logm) runtime overall.
Correctness: First, we claim that if our algorithm outputs a vote, then it must be valid.

Indeed, the excess score constraint for each node (or candidate) is satisfied at each step. Fur-
thermore, the tree structure of the action space ensures that the vote is always acyclic. Finally,
Step 1 maintains consistency with the ‘total’ constraint of pref-type.

Next, we will argue that converse, i.e., if there exists a valid vote �um for the manipulator,
then our algorithm must also return a valid vote, possibly different from �um . We will argue
this by contradiction. Suppose our algorithm terminates with a NO output. Consider an
alternate algorithm that examines pairwise comparisons in the order in which our algorithm
examines them, but makes choices consistent with �um . Clearly the alternate algorithm will
finish its run (instead of terminating prematurely like our algorithm) and output the valid
vote �um . Now consider running the two algorithms in parallel. At each step during the two
runs, the excess score of any remaining node in our algorithm can only be less than or equal
to the corresponding excess score under the alternate algorithm (this follows from the greedy
semantics of our algorithm). Therefore, there is no reason for our algorithm to terminate with
a NO output if the alternate algorithm finishes its run on the same input, providing the desired
contradiction.

Case (b): When pref-type = total+acyclic.
In this case, the manipulator is required to orient every edge of a given undirected graph A

such that (a) there are no directed cycles, and (b) the resulting vote helps the distinguished
candidate i∗ win the election. Our algorithm for this problem (Algorithm 1) relies on the fact
that any directed acyclic graph must admit a topological ordering, and, as a result, there must
exist a source vertex (i.e., one that wins all its pairwise comparisons in the manipulator’s vote).
At each step, the algorithm iterates over all the remaining vertices to check if any of them can
be made the source. If yes, the algorithm orients all its adjacent edges as outgoing, and proceeds
with a smaller graph with this vertex and all its adjacent edges removed. If, on the other hand,
no remaining vertex can be made the source, the algorithm terminates with a NO output.

We remark that our algorithm is a straightforward extension of the greedy algorithm
of Bartholdi III et al. (1989b) to general action spaces. Indeed, when the action space A is
a complete graph and pref-type = total+acyclic, then the manipulator is effectively required
to construct a ranking of the candidates (as is the case with the manipulation of standard voting
rules), and we recover the greedy procedure of Bartholdi III et al. (1989b).

Running Time: In each iteration, the algorithm makes O(n) checks for the source vertex,
and there are at most (n − 1) iterations overall. Each check requires O(n logm) computation.
Therefore, the algorithm runs in O(n3 logm) time.

Correctness: If Algorithm 1 returns a vote, then it must be valid because (a) all candidate
pairs are compared (hence total), (b) there are no directed cycles (hence acyclic), and (c) all
excess score constraints are satisfied at each step of the algorithm. We will now argue that
the converse is also true by showing that the algorithm terminates with a NO output only
when there does not exist a valid vote. Suppose, for the sake of contradiction, that there ex-
ists a valid manipulative vote �um but Algorithm 1 terminates with a NO output. The only
way this happens is if, at the time of termination, none of the remaining candidates could
have been made a source vertex without gaining positive excess. Let S ⊆ [n] \ i∗ denote the
set of remaining candidates in A at the time of termination of the algorithm, and let �partial

denote the partial orientation constructed by the algorithm before it terminates. Thus, if
AS = {{v, w} ∈ A : v ∈ S and w ∈ S} denotes the restriction of the action space A to the can-
didates in S, then �partial corresponds to the orientation (or vote) constructed by the algorithm
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Algorithm 1: Greedy Manipulation

input : A tuple 〈Π, i∗,A〉.
output: A total and acyclic vote �um ∈ R over A.

1 Start by making i∗ win all its pairwise comparisons (and remove all the edges oriented
this way from A). Update excess scores if required.

2 while some vertex v can be made a source vertex without gaining positive excess do
3 Orient all incident edges of v as outgoing and update excess scores for all vertices.
4 Remove the vertex v and the edges oriented above from further consideration.
5 if all edges in A have been oriented then
6 return YES and output the oriented graph.

7 Repeat with the smaller action space.

8 return NO.

for candidate pairs in A \ AS .
Now consider a different vote �′ obtained by combining �partial with the vote �um restricted

to the candidate pairs in AS . In other words, �′ resembles �partial for candidate pairs in A\AS ,
and �um for candidate pairs in AS , and is therefore well-defined.

We will now prove a key claim, which, along with the observation made in the next para-
graph, will provide the desired contradiction. First, we claim that �′ constitutes a valid ma-
nipulative vote. The reason for this is as follows: Any vertex v ∈ A is such that either v ∈ S
or v /∈ S. If v /∈ S, then, by construction, its excess score under the vote �′ depends only on
the �partial component. This means that v must have been made a source vertex at some stage
of the algorithm without it gaining positive excess. Therefore, the excess score constraint for
any v /∈ S is satisfied under �′. Now consider the case when v ∈ S. It is easy to observe that
the excess score of v under �′ is at most its excess score under the valid vote �um . Indeed,
by construction of �′, v must lose all its pairwise comparisons in A \ AS under �′, whereas
under �um , v can possibly win one or more of the comparisons in A\AS , resulting in a possibly
greater excess score. Moreover, since �um is a valid vote, the excess score of v under �um must
be non-positive, and by extension, the same holds for the vote �′. Thus, the excess score of all
vertices in A under �′ is zero or less, making it a feasible vote.

The final step in the proof is to observe that the existence of a feasible vote �′ contradicts the
assumption that our algorithm terminates prematurely with a NO output. Indeed, feasibility
of �′ demonstrates that there exists a valid orientation for the remaining vertices in S at the time
of termination (namely, �um restricted to the candidate pairs in AS), and therefore the check
in Line 2 of Algorithm 1 cannot fail. This finishes the proof of correctness of Algorithm 1.

Remark 1. (Locality Property) The proofs for both parts (a) and (b) of Theorem 3 rely
only on a locality property of score-based pairwise voting rules. This property requires that
adding a pairwise comparison between a pair of candidates only affects the scores of the two
candidates involved, while the scores of all the other candidates are unaffected. For this reason,
other score-based pairwise voting rules with this locality property such as Copelandα also admit
polynomial time manipulation algorithms in the settings described above (refer to Tables 2 to 4
in Section 1). We state this observation as Corollary 4.

Corollary 4. Copelandα-Manipulation for all rational α ∈ [0, 1] is efficiently solvable in the
following cases: (a) for any choice of pref-type when A is a tree, and (b) for any choice of A
when pref-type = total+acyclic.

We now turn to the results about the computational hardness of manipulation. Our first
result states that manipulating the pBorda rule can be computationally intractable, even when
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Figure 5: Subfigure (a) shows the instance of S-Elimination used in the proof of The-
orem 5. This instance is identical (up to normalization) to the one originally constructed
by Kern and Paulusma (2004) in the context of showing NP-completeness of S-Elimination
via reduction from 3-D Matching. The instance consists of seven groups of teams—
namely, W,W,R,X, Y ,X and Y—represented as circles, squares and triangles. The solid
edges stand for the set of games that are still to be played. The scoring system is S =
[(16 ,

−1
6 ), (0, 0), (−112 ,

1
12)]. All teams in each group have the same score, as mentioned inside

parentheses. Subfigure (b) shows the corresponding pBorda-Manipulation instance, where
the circles, squares and triangles now correspond to the candidates, and the solid edges denote
the action space of the manipulator. An edge label “a:b” for an edge connecting the vertices i
and j means that i and j are in a:b configuration. The dummy candidates that interact with a
candidate w ∈W are shown as solid circles, and the dashed edges represent the votes of the non-
manipulators for these pairs. Notice that the dashed edges do not belong to the action space A.
The excess pBorda scores of the candidates in each group are mentioned inside parentheses.

the action space of the manipulator is a bipartite graph of maximum degree three.

Theorem 5. pBorda-Manipulation is NP-complete when A ∈ {bipartite, general graph} has
maximum degree three and pref-type ∈ {acyclic, unrestricted}.

Proof. The problem is clearly in NP. We show NP-hardness via reduction from S-Elimination
with S = [(1/6,−1/6), (0, 0), (−1/12, 1/12)]. Recall that an instance of S-Elimination is de-
fined by a tuple 〈s, i∗,G〉, where s = (s1, s2, . . . , sN )T is the vector of current scores of the N
teams, i∗ ∈ [N ] is the distinguished team, and G ⊆

(
[N ]
2

)
is the set of remaining games between

the teams.
Instead of showing a reduction from a general instance of S-Elimination, we will assume

that the instance has the following additional properties:

• The S-Elimination instance consists of seven groups of teams comprising [N ],
namely W,W,R,X, Y ,X and Y (represented as circles, squares and triangles in Fig-
ure 5a) as well as the distinguished team i∗ (not shown in the figure). We also have
that |W | = |X| = |Y |.

• The set of remaining games G for each team is as follows:

– each team in W (respectively X and Y ) has at least one and at most three remaining
games against the teams in W (respectively X and Y ),11

11This assumption, while not necessarily true for the S-Elimination instance originally constructed by Kern
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– each team in W (respectively X and Y ) has two remaining games—one apiece against
the teams in R and W (respectively X and Y ),

– each team in R has three remaining games—one apiece against the teams in W,X
and Y , and

– the distinguished team i∗ has no remaining games.

• All teams in a group have the same score, and therefore the same excess score. The
current scores of all teams in each group are as follows: W ((2− 2δ)/12), W (2/12), R(0),
X(−1/12), Y (−1/12), X ((δ − 1)/12) and Y ((δ − 1)/12), where δ denotes the degree
function of the graph G. The distinguished team i∗ has an initial score of 0.

• The scoring system is S = [(16 ,
−1
6 ), (0, 0), (−112 ,

1
12)].

• Finally, for each remaining game in G, the team from W,X or Y should be considered
the away team.

We remark that the above structural assumptions about the original S-Elimination instance
are without loss of generality, since the problem continues to be NP-complete even under the
assumed conditions. This is simply because the above properties hold for the instance of S-
Elimination constructed by Kern and Paulusma (2004) in their proof for showing the NP-
completeness of S-Elimination via redution from 3-D Matching.12 The advantage of these
additional assumptions, of course, will be in simplifying the presentation of several of our proofs,
while also lending structural insights into the complexity of pBorda-Manipulation problem.

The reduced pBorda-Manipulation instance 〈Π, i∗,A, pref-type〉 is constructed as fol-
lows:

• The set of candidates [n] consists of

– a candidate i for each team i ∈ [N ], including a distinguished candidate i∗ corre-
sponding to the distinguished team i∗, and

– five dummy candidates Di
1, . . . , D

i
5 for each candidate i ∈ [n]. Thus, there are n =

N + 5 ·N = 6N candidates overall.

• The action space A of the manipulator corresponds to the set of the remaining games G
between the corresponding pairs of teams.

• The set of non-manipulators consists of twelve voters u1, . . . , u12. Their votes are set up
as follows:

– votes between candidate pairs (i, j) in A: For each game (i, j) ∈ G where i is the
home team and j is the away team, the corresponding candidate pair (i, j) ∈ A is in
a 1:2 configuration,13

– votes between the distinguished candidate i∗ and the dummy candidates: The
pairs (i∗, Di∗

1 ), (i∗, Di∗
2 ), (i∗, Di∗

3 ), (i∗, Di∗
4 ) and (i∗, Di∗

5 ) are set up in the config-
uration 1:0, 5:7, 1:1, 1:1 and 1:1 respectively, and

and Paulusma (2004), can be justified by starting their reduction from the variant of 3-D Matching where each
base element occurs in at least one and at most three triples. This variant is known to be NP-complete (Garey
and Johnson, 1979, Problem SP1 on page 221).

12 Strictly speaking, the instance used by Kern and Paulusma (2004) is the normalized version of the instance
used in our proof (refer to the normalization scheme described in Section 2.9). Nevertheless, we choose to work
with the unnormalized instance in the interest of ease of demonstrating the connection with the manipulation
problem. We remark that this is without loss of generality, since our unnormalized instance can be obtained from
Kern and Paulusma’s normalized instance by carrying out the translation and scaling operations in the reverse
order.

13Recall from Section 2.3 that a vote configuration of 1:2 between a pair of candidates (i, j) means that one
voter (say u1) votes i�u1 j while two other voters (say u2 and u3) vote j�u2 i and j�u3 i.
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A D1 D2 D3 D4 D5 Excess score

Wδ=1
1
3 1 7

12
1
2

1
2 0 0

Wδ=2
2
3 1 7

12
1
2 0 0 − 2

12

Wδ=3 1 1 7
12 0 0 0 − 4

12

W 4
3 0 3

12
1
2

1
2

1
2

2
12

R 1 0 5
12

1
2

1
2

1
2 0

X ∪ Y 4
3 0 0 1

2
1
2

1
2 − 1

12

Xδ=1 ∪ Yδ=1
1
3 1 4

12
5
12

5
12

5
12 0

Xδ=2 ∪ Yδ=2
2
3 1 4

12
5
12

5
12

2
12

1
12

Xδ=3 ∪ Yδ=3 1 1 4
12

5
12

2
12

2
12

2
12

i∗ 0 1 5
12

1
2

1
2

1
2 0

Table 6: This table shows the pBorda scores acquired by various candidates in our construction
in the proof of Theorem 5. Each entry of the table indicates the pBorda score acquired by a
row candidate due to its interaction with the set of candidates in each column. The rightmost
column shows the excess scores.

– votes between non-distinguished candidates in A and the dummy candidates:

∗ for each candidate w ∈ W such that δ(w) = 1, the pairs (w,Dw
1 ), (w,Dw

2 ),
(w,Dw

3 ), (w,Dw
4 ) and (w,Dw

5 ) are set up in the configuration 1:0, 7:5, 1:1, 1:1 and
0:0 respectively; for each candidate w ∈W such that δ(w) = 2, the pairs (w,Dw

1 ),
(w,Dw

2 ), (w,Dw
3 ), (w,Dw

4 ) and (w,Dw
5 ) are set up in the configuration 1:0, 7:5,

1:1, 0:0 and 0:0 respectively; for each candidate w ∈ W such that δ(w) = 3,
the pairs (w,Dw

1 ), (w,Dw
2 ), (w,Dw

3 ), (w,Dw
4 ) and (w,Dw

5 ) are set up in the
configuration 1:0, 7:5, 0:0, 0:0 and 0:0 respectively,

∗ for each candidate w ∈ W , the pairs (w,Dw
1 ), (w,Dw

2 ), (w,Dw
3 ), (w,Dw

4 ) and
(w,Dw

5 ) are set up in the configuration 0:0, 3:9, 1:1, 1:1 and 1:1 respectively,

∗ for each candidate r ∈ R, the pairs (r,Dr
1), (r,Dr

2), (r,Dr
3), (r,Dr

4) and (r,Dr
5)

are set up in the configuration 0:0, 5:7, 1:1, 1:1 and 1:1 respectively,

∗ for each candidate x ∈ X, the pairs (x,Dx
1 ), (x,Dx

2 ), (x,Dx
3 ), (x,Dx

4 ) and (x,Dx
5 )

are set up in the configuration 0:0, 0:0, 1:1, 1:1 and 1:1 respectively (the votes
involving the candidates in the set Y are defined analogously), and

∗ for each candidate x ∈ X such that δ(x) = 1, the pairs (x,Dx
1 ), (x,Dx

2 ), (x,Dx
3 ),

(x,Dx
4 ) and (x,Dx

5 ) are set up in the configuration 1:0, 4:8, 5:7, 5:7 and 5:7
respectively; for each candidate x ∈ X such that δ(x) = 2, the pairs (x,Dx

1 ),
(x,Dx

2 ), (x,Dx
3 ), (x,Dx

4 ) and (x,Dx
5 ) are set up in the configuration 1:0, 4:8,

5:7, 5:7 and 2:10 respectively; for each candidate x ∈ X such that δ(x) = 3, the
pairs (x,Dx

1 ), (x,Dx
2 ), (x,Dx

3 ), (x,Dx
4 ) and (x,Dx

5 ) are set up in the configuration
1:0, 4:8, 5:7, 2:10 and 2:10 respectively (the votes involving the candidates in the
set Y are defined analogously).

• Finally, pref-type is set to either acyclic or unrestricted.

It is easy to check that the excess pBorda scores of the candidates exactly match the excess
scores of the corresponding teams in the sports instance (refer to Table 6). Furthermore, for each
candidate pair (i, j) ∈ A set up in a 1:2 configuration, the pBorda scores of i and j can change
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by (+1/6,−1/6), (0, 0) or (−1/12,+1/12) depending on whether the manipulator votes i� j,
skip or j� i respectively. This set of score exchanges is exactly the set of scoring outcomes
prescribed by S in the S-Elimination instance. Therefore, an assignment of remaining games
in the original instance is a winning one if and only if the corresponding vote in the reduced
instance is a winning one as well.

It remains to be shown that any winning vote in the reduced instance is acyclic without
loss of generality. To show this, we will argue that any winning assignment in the original
instance is, without loss of generality, acyclic. Indeed, observe that any team w ∈ W in the
S-Elimination instance can win at most one of its remaining games against the teams in W
without ending up with positive excess. Therefore, we will assume, without loss of generality,
that w wins exactly one of its remaining games and plays a draw in the other(s). Notice that
this already rules out w from being part of a directed cycle in the eventual assignment. Next, if
a team w ∈ W loses the game against w ∈ W , then, without loss of generality, it plays a draw
with the team in R in its other remaining game, otherwise it loses the latter game. Similarly,
any team r ∈ R that wins the game against the team in W must lose both of its remaining
games against the teams in X and Y , otherwise it must play a draw in both these games. The
latter case rules out the possibility of a directed cycle, so we focus on the former. In this case,
each x ∈ X (or y ∈ Y ) that wins its game against the team in R can, without loss of generality,
play a draw in its other remaining game against the team in X (or Y ). In summary, it is without
loss of generality that any winning assignment in the original instance is acyclic, implying the
same for the reduced election instance.

Finally, notice that the graph G in the original instance (Figure 5a) is bipartite and has
maximum degree three, implying the same for the action space A in the reduced instance.
Therefore, pBorda-Manipulation is NP-complete even when A is bipartite and has maximum
degree three, and when pref-type = acyclic.

Remark 2. (Parameterized implication) Since the above reduction requires at most 12 non-
manipulators, we have that pBorda-Manipulation is para-NP-complete when parameterized
by the number of non-manipulators.

Remark 3. (Parameterized implication) Note that the reduced election instance has maximum
degree ∆ = 3, and therefore from Definition 1, diversity d ≤ 3. Hence, pBorda-Manipulation
is para-NP-complete when simultaneously parameterized by the diversity (d) and maximum
degree (∆) parameters.

Remark 4. (Technical observation) Observe that regardless of how the manipulator chooses
to vote, the smallest positive excess score that any candidate can achieve in the reduced in-
stance is always at least 1/12. Thus, pBorda-Manipulation continues to be NP-complete even
when (a) the smallest possible positive excess score that any candidate can have is at least 1/12,
and (b) there are at most twelve non-manipulators in the election. This feature of the reduced
instance will be useful later in the proof of Theorem 8.

Remark 5. (When pref-type = transitive) It can be shown that the above NP-completeness
result for pref-type = acyclic extends to the case where pref-type = transitive. Recall that
transitivity requires that i� k whenever i� j and j� k. Since the action space in our reduced
instance is bipartite (i.e., consists of no odd cycles), the transitivity condition is vacuously
satisfied. As a result, pBorda-Manipulation continues to be NP-complete even when A =
bipartite and pref-type = transitive. The requirement for transitivity becomes interesting
only when the action space consists of cycles of size three, such as when A is a complete graph.
As we will argue later in Remark 8, pBorda-Manipulation remains NP-complete even for this
case.

Our next result (Theorem 7) shows that pBorda-Manipulation is NP-complete when the
manipulator is not allowed to skip any pairwise comparison in A (i.e., pref-type = total).
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Our proof consists of two parts: First, we introduce a generalization of the S-Elimination
problem (which we call Mixed-Elimination) and show that the problem is NP-complete via
reduction from 3-D Matching (Lemma 6). Next, we show that Mixed-Elimination reduces
to pBorda-Manipulation when pref-type = total, providing the desired hardness result. We
start with a description of Mixed-Elimination.

Mixed-Elimination: Mixed-Elimination is a generalization of S-Elimination for compe-
titions in which different games can be played under different scoring systems. That is, instead
of a single scoring system S as in S-Elimination, Mixed-Elimination consists of k different
scoring systems S1,S2, . . . ,Sk and an assignment function η which maps each game in G to
exactly one of these scoring systems. The question of interest, once again, is: Can team i∗ still
win the competition?

Mixed-Elimination(S1,S2, . . . ,Sk)

Input: A tuple 〈s, i∗,G, η〉, where s = (s1, s2, . . . , sN )T is the vector of cur-
rent scores of the N teams, i∗ ∈ [N ] is the distinguished team, G ⊆(
[N ]
2

)
is the set of remaining games between the teams, and η is a

function that assigns a scoring system from {S1,S2, . . . ,Sk} to each
game in G.

Question: Does there exist an assignment of outcomes for the games in G such
that i∗ ends up with the (joint) highest overall score among all teams
when each game is scored according to the scoring system chosen
by η?

Analogous to S-Elimination, we will assume for Mixed-Elimination that the distin-
guished team i∗ has no remaining games.

Our proof of Theorem 7 focuses on Mixed-Elimination(S1,S2) where S1 =
[(10,−10), (−5, 5)] and S2 = [(8,−8), (−2, 2)]. That is, each remaining game is scored according
to either S1 or S2 and no game can end in a draw. We already know from Theorem 1 that
the pure elimination problems with either of these scoring systems—namely S1-Elimination
or S2-Elimination—admit polynomial time algorithms.14 By contrast, the mixed elimina-
tion problem with these two scoring systems together turns out to be computationally hard
(Lemma 6).

Lemma 6. Mixed-Elimination(S1,S2) with S1 = [(10,−10), (−5, 5)] and S2 =
[(8,−8), (−2, 2)] is NP-complete even if the set of remaining games G induces a bipartite graph.

Proof. Membership in NP is clear. We show a polynomial time reduction from a variant of 3-D
Matching where each base element occurs in at most three triples. This variant is known to
be NP-complete (Garey and Johnson, 1979, Problem SP1 on page 221).

Our proof follows the template of a similar proof by Kern and Paulusma (2004), who show
the hardness of S-Elimination via a reduction from the standard version of 3-D Matching
(i.e., they do not make the additional assumption that each base element occurs in at most three
triples). Specifically, Kern and Paulusma (2004) represent any instance of 3-D Matching as
a matching graph (see Figure 6a). Each vertex of the matching graph belongs either to one of
the base sets W,X or Y , or the set of triples R, or one of the sets W,X, Y that encode the

14This is because any instance of S-Elimination with S = S1 (or S = S2) can be transformed into an equivalent
(efficiently solvable) instance of S-Elimination with S = [(1, 0), (0, 1)] via the normalization scheme described
in Section 2.9.
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Figure 6: Subfigure (a) shows the matching graph for a given 3-D Matching instance. The
base sets W,X and Y and the set of triples R are represented as circles and triangles respectively.
Each member of W (respectively X,Y ) is connected to at most three members of the set W
(respectively X,Y ), shown as squares. Each such square represents an occurrence of the member
of W (or X or Y ) in the set R. The excess scores of the teams represented by each set in the
Mixed-Elimination instance are mentioned in parentheses. The solid and dashed edges denote
the games scored according to S1 = [(10,−10), (−5, 5)] and S2 = [(8,−8), (−2, 2)] respectively.
Subfigure (b) shows all possible score transfers between pairs of teams from different sets. Thus,
for instance, for a game between a team in W (away) and a team in W (home), a home win
results in the team in W losing 10 points while the team in W gains the same amount. Similarly,
an away win results in a transfer of 5 points in the opposite direction.

occurrences of the elements of the base sets W,X and Y in the set of triples R. Each vertex
in W is connected via an edge to each of the k vertices w1, . . . , wk in W that represent the k
distinct occurrences of w in the set of triples R. The vertices in the sets X and Y are similarly
connected to the vertices in X and Y respectively. In addition, each vertex r ∈ R representing
a triple r = (w, x, y) is connected to three vertices—one each in W,X and Y—that are in turn
adjacent to the base elements w, x and y respectively. Under the additional assumption about
the variant of 3-D Matching mentioned above, it is easy to see that each base element in the
sets W , X and Y is adjacent to at least one and at most three vertices in the sets W , X and Y
respectively.

The main idea in Kern and Paulusma’s proof is to think of the vertices and the edges in
the matching graph respectively as teams and the set of remaining games between them. We
use this idea to set up an instance of Mixed-Elimination(S1,S2) in which the games in the
upper half of the matching graph are scored according to S1 = [(10,−10), (−5, 5)] and those in
the lower half are scored according to S2 = [(8,−8), (−2, 2)], shown as solid and dashed edges
respectively in Figure 6a.

Construction of the reduced instance: Formally, given an instance 〈W,X, Y,R〉 of 3-D
Matching, we construct an instance 〈s, i∗,G, η〉 of Mixed-Elimination(S1,S2) as follows:

• the set of teams [N ] is the union of the sets W,X, Y,W,X, Y and R (i.e., a team for every
vertex in the matching graph) along with the distinguished team i∗,

• the set of remaining games G is precisely the set of all solid and dashed edges in the
matching graph,

• the assignment function η is such that all games involving teams from W are scored
according to S1, while all other games in G are scored according to S2. Furthermore, for
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any game, a team higher up in the matching graph should be considered the away team,
and

• the current score of the team i∗ is fixed at 0. The group-wise excess scores of the teams
are: W (15− 5δ), W (0), R(1), X(0), Y (0), X(2δ − 10) and Y (2δ − 10).

Equivalence of solutions: (⇒) Suppose there exists a solution R′ ⊆ R to the 3-D Matching
instance. Then, a winning assignment can be constructed as follows:

• Each team r ∈ R′ where r = (w, x, y) beats the team w ∈ W corresponding to the
element w, and loses against the teams x ∈ X and y ∈ X corresponding to the elements x
and y respectively. This leaves the team r with an excess of −5.

• Each team r ∈ R \ R′ where r = (w, x, y) does the exact opposite by losing against the
team w ∈ W corresponding to the element w, and winning against the teams x ∈ X
and y ∈ X corresponding to the elements x and y respectively. This leaves the team r
with zero excess.

• If a team w ∈ W (respectively x ∈ X and y ∈ Y ) loses against the team in R, then it
wins its other remaining game against w ∈W (respectively x ∈ X and y ∈ Y ), otherwise
it loses the latter game. This leaves each team in W , X and Y with zero excess.

Finally, as a result of the above assignment, each team w ∈ W ends up losing exactly one and
winning all the rest of its games, leaving it with zero excess. A similar observation for the teams
in X and Y shows that they end up with zero excess as well. Therefore, the above assignment
of outcomes is a winning one for the team i∗.

(⇐) Now suppose there exists an assignment of the remaining games that makes the team i∗

win. Observe that each team in W can win at most one of its games (while losing all the rest)
without gaining positive excess score. We can therefore assume, without loss of generality, that
each team in W wins exactly one of its games while losing all the others. Next, any team in W
that loses against the team in W can be, without loss of generality, assumed to win against the
team in R, while a team in W that wins against the team in W must lose against the team
in R. Combining the above observations, it can be inferred that among all the triples in R that
contain a fixed element w ∈ W , exactly one triple r ∈ R loses against the team in W while all
the other triples win their corresponding games against the teams in W . We will say that r is
the unique triple that is activated by w.

Continuing the above reasoning for the teams in the set R, it can be observed that any team
in R that loses against the team in W can be, without loss of generality, assumed to win against
the teams in X and Y . In other words, the team corresponding to a triple that is activated by
some element of W can be assumed to win against the teams in X and Y . Moreover, any team
in R that wins against the team in W must lose against the teams in X and Y .

By a similar argument as above, any team in X (respectively Y ) that loses against the team
in R can be, without loss of generality, assumed to win against the team in X (respectively Y ),
while any team in X (respectively Y ) that wins against the team in R must lose against the
team in X (respectively Y ).

Once again by earlier arguments, any team in X (respectively Y ) can be, without loss of
generality, assumed to win exactly one of its games while losing all the rest. As before, we
will say that for each team x ∈ X (respectively y ∈ Y ), there is a unique triple in R that is
activated by x (respectively y). Since any triple that is not activated by some element of W
must lose against the teams in X and Y , we have that the triples activated by wins from X
and Y must coincide with those activated by W . The set of all activated triples can now be
shown to constitute a valid solution to the 3-D Matching instance.

To finish the proof, observe that since the graph G in the reduced instance is bipartite, we
have that Mixed-Elimination(S1,S2) is NP-complete even when the set of remaining games
induces a bipartite graph, as desired.
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Theorem 7. pBorda-Manipulation is NP-complete when A ∈ {bipartite, general graph}
and pref-type = total.

Proof. (Sketch.) We only provide a sketch of the proof here, since the detailed proof largely
follows the template of the proof of Theorem 5. We show a polynomial time reduction from
Mixed-Elimination(S1,S2) with S1 = [(10,−10), (−5, 5)] and S2 = [(8,−8), (−2, 2)], which
was shown to be NP-complete in Lemma 6. Just like in the proof of Theorem 5, we match
teams with candidates and the set of remaining games with the action space of the manipulator.
Furthermore, if a game between two teams is scored according to S1 (respectively S2), then the
corresponding candidates are set up in a 1:2 (respectively 1:4) configuration. The ‘no games
drawn’ condition translates to pref-type = total. Finally, since the set of remaining games in
the Mixed-Elimination instance can be assumed to induce a bipartite graph, the same holds
for the action space of the manipulator in the reduced instance.

Remark 6. (The need for Mixed-Elimination) It is worth pointing out that when pref-type

= total, we cannot reuse the arguments in Theorem 5 to show a reduction from S-
Elimination to pBorda-Manipulation. The reason is that for a scoring system S to cor-
respond to the changes in pBorda scores due to the manipulator’s vote, it must be of the
form [(α,−α), (0, 0), (−β, β)], where α, β ∈ N. When the manipulator is not allowed to skip
any comparison—as is the case with pref-type = total—the required form becomes S =
[(α,−α), (−β, β)], which can be reduced to the trivial [(0, 0)] system via the normalization
scheme described in Section 2.9. This motivates the need to consider instances with more than
one scoring system, as in Mixed-Elimination.

Remark 7. (Technical observation) It is easy to verify that if two teams have non-identical
scores in our Mixed-Elimination instance (Lemma 6), then their scores must always differ by
at least 1, regardless of the choice of the assignment for the remaining games. For the election
instance (Theorem 7), this means that if the scores of any two candidates are distinct, then they
must differ by at least 1

60 , regardless of the manipulator’s vote. Thus, pBorda-Manipulation
continues to be NP-complete even when the smallest possible non-zero difference between the
scores of any two candidates is at least 1

60 . This feature of the reduced instance will be useful
in the proof of Theorem 8.

Our final result in this section shows that pBorda-Manipulation remains NP-complete
even when the manipulator is allowed to compare all pairs of candidates.

Theorem 8. pBorda-Manipulation is NP-complete when A = complete graph and
pref-type ∈ {total, acyclic, unrestricted}.

Proof. The problem is clearly in NP. For any fixed choice of pref-type ∈ {total, acyclic,
unrestricted}, we reduce from the corresponding pBorda-Manipulation problem with A =
general graph, which was shown to be NP-complete in Theorems 5 and 7. We present the proof
in two parts, namely (a) pref-type ∈ {acyclic, unrestricted} and (b) pref-type = total. We
start by providing a high-level overview of the reductions.

Informal idea of the reduction: The original and the reduced instances have the same set of
candidates. The votes of the non-manipulators between the candidate pairs in A in the original
instance are identical to those for the corresponding candidate pairs in the reduced instance.
For candidate pairs outside A in the original instance that are in a : b configuration, the
corresponding candidate pairs in the reduced instance are in aK : bK configuration, where K is
a polynomial in n. Since the fraction of voters that prefer one candidate over the other in the
original instance is the same as that for the corresponding candidates in the reduced instance,
the pBorda scores of the candidates are unchanged across the two instances. Scaling up the
non-manipulators’ votes for the candidate pairs outside A in the reduced instance means that
the additional vote of the manipulator can make very little change in the pBorda scores of these
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candidate pairs. This essentially forces the manipulator in the reduced instance to work with
the candidate pairs within A, providing the desired equivalence of the two solutions. The formal
proof follows.

Case (a): pref-type ∈ {acyclic, unrestricted}
In this case, we reduce from the instance of pBorda-Manipulation constructed in the proof

of Theorem 5 (refer to Figure 5b). Specifically, we will use the following two features of this
election instance:

• there are at most 12 non-manipulators, and

• the smallest possible positive excess score that a candidate can have, regardless of how
the manipulator chooses to vote, is at least 1

12 (see Remarks 2 and 4).

We start by describing the construction of the reduced instance followed by showing the equiv-
alence of solutions of the two problems.

Construction of the reduced instance: Given an instance 〈Π, i∗,A, pref-type〉 of pBorda-
Manipulation with A = general graph and pref-type ∈ {acyclic, unrestricted}, we con-
struct an instance 〈Π′, i∗′,A′, pref-type′〉 of pBorda-Manipulation with A′ = complete graph
and pref-type′ = pref-type as follows:

1. The original and the reduced instances have the same set of candidates. The distinguished
candidate i∗′ is the same as i∗.

2. The reduced instance consists of (m′ − 1) non-manipulators and one manipulator. We
choose m′ = 6K + 1 where K = 13n2 + 1. The votes of the non-manipulators in the
reduced instance are set up as follows:

• if a candidate pair (i, j) ∈ A in the original instance is in a : b configuration, then the
corresponding candidate pair in the reduced instance is also in a : b configuration.

• if a candidate pair (i, j) /∈ A in the original instance is in a : b configuration, then the
corresponding candidate pair in the reduced instance is in aK : bK configuration.

In other words, the preferences of the non-manipulators between candidate pairs in A are
unchanged, while those between the candidate pairs outside A are scaled up by a factor of K in
the reduced instance. The pBorda scores of the candidates are preserved in the reduction since
they depend only on the fractional preferences of voters, which are identical between the two
instances. As a consequence, the excess scores of candidates are also unchanged. This reduction
is clearly efficient since the size of the reduced instance is polynomial in the size of the pBorda-
Manipulation input. Indeed, the reduced instance consists of n candidates and O(n2) voters
each with O(n2) preference information.

We will use the notation A′∩A to refer to the set of all candidate pairs (i′, j′) in the reduced
instance such that (i, j) ∈ A.

Equivalence of solutions: (⇒) Suppose there exists a vote �um for the manipulator um
in the original pBorda-Manipulation instance such that i∗ is a pBorda winner. Then a
winning vote �um′ for the manipulator um′ in the reduced instance can be constructed by
simply mimicking �um for the pairwise comparisons in A′ ∩ A and skipping the rest of the
comparisons. Since a skipped comparison does not count for any change in pBorda scores, the
outcomes for the two instances are identical. Moreover, an acyclic vote in the original instance
continues to be acyclic in the reduced instance.

(⇐) Now suppose there exists a vote �um′ for the manipulator um′ in the reduced instance
such that i∗′ is the pBorda winner. We will show that there must exist a vote �um for the
manipulator um in the original pBorda-Manipulation instance that makes i∗ win.

Suppose, for the sake of contradiction, that there does not exist such a vote �um in the
original instance. In particular, this means that the restriction of the winning vote �um′ in the
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reduced instance to the pairs inA′∩A does not constitute a winning vote in the original instance.
In other words, the manipulator um in the original instance cannot succeed by mimicking the
winning vote of um′ restricted to A′ ∩ A, since such a vote always leaves some candidate in A
with positive excess score. On the other hand, the manipulator um′ in the reduced instance
manages to nullify any such excess by using pairwise comparisons from outside A′ ∩ A.

We will now argue that such a scenario is impossible. Indeed, the largest possible excess
score that can be nullified in the reduced instance by the combined contribution of all pairwise
comparisons from outside A′∩A is 1

K+1 · n
2. This is because there are at most n2 such pairs, and

each pair can help remove an excess of at most 1
K+1 due to the scaling by K. Since K > 13n2,

we have that 1
K+1 · n

2 < 1
13 . However, as mentioned earlier, the smallest possible positive excess

score of any candidate in the original pBorda-Manipulation instance, regardless of how the
manipulator chooses to vote, is at least 1

12 >
1
13 . Hence, the manipulator um′ cannot use pairwise

preferences from outside A′ ∩ A to convert a losing vote in the original election into a winning
one in the reduced election, providing the desired contradiction.

Case (b): pref-type = total
In this case, we reduce from the instance of pBorda-Manipulation constructed in the

proof of Theorem 7. We will make use of the observation from Remark 7 that the smallest
possible non-zero difference in the pBorda scores of any pair of candidates in the original election
instance is, without loss of generality, at least 1

60 . The construction of the reduced instance of
pBorda-Manipulation with pref-type = total and A′ = complete graph is identical to the
one described earlier in case (a) (with the exception that this time K = 60n2 + 1), so we move
on to showing the equivalence of the two solutions.

Equivalence of solutions: (⇒) Suppose there exists a vote �um for the manipulator um in the
original pBorda-Manipulation instance such that i∗ is a pBorda-winner. Unlike the previous
case, where a winning vote was constructed by mimicking the relevant preferences and skipping
the rest of the comparisons, the argument here is slightly more subtle, since the manipulator
in the reduced instance can no more choose to skip any pairwise comparisons. Therefore, the
manipulator um′ must ensure that no choice of total preferences outside A′ ∩ A in the reduced
instance can offset even the smallest non-zero score difference between any two candidates
inside A′ ∩ A. We know from Remark 7 and the choice of K above that this is indeed true.
Hence, a winning vote �um′ for the manipulator um′ in the reduced instance can be constructed
by simply mimicking the preferences in �um for comparisons in A′ ∩A and providing arbitrary
preferences for the remaining comparisons. Since the influence of the total preferences from
outside A′ ∩ A is essentially superfluous, the two elections have the same outcome.

(⇐) Conversely, a winning vote in the reduced instance can be used to construct a winning
vote in the original instance, simply by taking the restriction of the former to A′ ∩ A. The
reasoning is identical to that of case (a). This completes the proof of Theorem 8.

Remark 8. (When pref-type = transitive) Recall that the NP-completeness of pBorda-
Manipulation when A = general graph and pref-type = transitive was argued in Re-
mark 5. By starting our reduction in case (a) from an instance of pBorda-Manipulation
with pref-type = transitive (instead of acyclic), we can, therefore, use similar reasoning to
show that pBorda-Manipulation continues to be NP-complete when A = complete graph and
pref-type = transitive. This result suggests that the approach of moving away from the stan-
dard framework of rankings by relaxing the requirement of comparing all pairs (and assuming
only transitivity) can be a useful way of making the pBorda-Manipulation problem compu-
tationally hard. This observation is complemented by our result in case (b), which shows that
relaxing the transitivity/acyclicity assumption (and only requiring that all candidate pairs are
compared) is a similarly promising approach.
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4.2.2 Complexity of Manipulating Copelandα

Our results for the complexity of Copelandα-Manipulation are summarized in Tables 2 to 4
in Section 1 and are stated as Theorems 9, 10 and 12. Recall from Corollary 4 in Section 4.2.1
that Copelandα-Manipulation is efficiently solvable for any action space A when pref-type

= total+acyclic. This still leaves open the case of pref-type = total, acyclic or unrestricted.
For the case pref-type= total, Faliszewski et al. (2010) showed that Copelandα-

Manipulation for A = complete graph is polynomial-time solvable for α ∈ {0, 1}, and NP-
complete for all rational values of α ∈ (0, 1) \ {0.5}.15 Notice that this setting corresponds to
the votes being tournaments.

In Theorem 9, we extend the tractability results of Faliszewski et al. (2010) for α ∈ {0, 1}
to any choice of the action space A and pref-type ∈ {total, acyclic, unrestricted} (refer to
Table 2 in Section 1). Along with Corollary 4, this result shows that the Copelandα rule is
efficiently manipulable when α ∈ {0, 1}, regardless of the choice of A and pref-type.

For Copeland0.5-Manipulation, we show tractability for any choice of A when pref-type

∈ {acyclic, unrestricted} (refer to Table 3). For all remaining choices of α, A and pref-type,
we show NP-completeness results in Theorems 10 and 12 (refer to Tables 3 and 4).

Theorem 9. Copelandα-Manipulation is efficiently solvable in the following cases: (a)
for α ∈ {0, 1} for any choice of A when pref-type ∈ {total, acyclic, unrestricted} and (b)
for α = 0.5 for any choice of A when pref-type ∈ {acyclic, unrestricted}.

Proof. We start with the observation that the vote of the manipulator between a pair of candi-
dates (i, j) has no effect on the Copeland scores if |mij−mji| > 1, where mij and mji denote the
number of non-manipulators who vote i� j and j� i respectively. Hence, without loss of gen-
erality, the manipulator either skips such comparisons (if pref-type ∈ {acyclic, unrestricted})
or provides arbitrary preferences for such pairs (if pref-type = total). Thus, we will assume
for the rest of the proof that all candidate pairs (i, j) in A are of the form |mij −mji| ≤ 1. We
will also assume throughout that the distinguished candidate wins all its pairwise comparisons
in the manipulator’s vote, and therefore its Copeland score is fixed.

We now describe the manipulation algorithms for each setting of α and pref-type. These
algorithms will differ from each other only in their handling of the two subcases corresponding
to mij = mji + 1 and mij = mji.

Case (a): Copelandα-Manipulation for α ∈ {0, 1} for any choice of A and pref-type

∈ {total, acyclic, unrestricted}.

(1) α = 0

(i) pref-type = unrestricted

In this case, the manipulator would like to create as many ties between pairs of
non-distinguished candidates as possible (thereby providing α = 0 points to both can-
didates involved). Thus, for any candidate pair (i, j) in A, the manipulator votes j� i
whenever mij = mji + 1, and skips the comparison otherwise. Formally,

�um =
⋃

(i,j)∈A

{
{ j� i } if mij = mji + 1;

skip otherwise.

15Faliszewski et al. (2010) claim in Theorem 5.2 of their paper that Copeland0.5-Manipulation with k ≥ 1
manipulators is also efficiently solvable when A=complete graph and pref-type = total. Their proof uses the
computational results of Faliszewski et al. (2009b) about a related problem called microbribery of Copelandα

elections. This problem was shown by Faliszewski et al. (2009b) to be efficiently solvable for α ∈ {0, 1} but not
for α = 0.5. Hence, the polynomial time solvability of Copeland0.5-Manipulation cannot be directly inferred
from the corresponding microbribery version, since the computational complexity of the latter is not known. We
fill this gap by showing that Copeland0.5-Manipulation is in fact NP-complete when A ∈ {bipartite, complete
graph} and pref-type = total (refer to Theorem 12), implying the same for the corresponding microbribery
problem (of which the manipulation problem is a special case).
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(ii) pref-type = total

In this case, the manipulator faces a situation similar to the one above with the
additional constraint that skipping a comparison is not allowed. Recall that in the
above case, all comparisons skipped by the manipulator are of the form mij = mji.
For such candidate pairs (i, j), the Copeland scores of i and j can change by (+1,0)
or (0,+1) depending on whether the manipulator votes i� j or j� i. The problem of
finding a winning vote over such pairs can be reduced to S-Elimination with S =
[(1, 0), (0, 1)] in the following straightforward manner: Each candidate i or j as above
corresponds to a team, and the Copeland score of i or j is equal to the current score
of the team. Moreover, the comparison between the pair (i, j) (where mij = mji)
corresponds to the game to be played between the corresponding teams. We know
from Theorem 1 in Section 2.8 that this subproblem is efficiently solvable. Hence, the
manipulator’s vote consists of comparisons of the form j� i whenever mij = mji + 1
combined with the votes/outcomes resulting from the S-Elimination subroutine.

(iii) pref-type = acyclic

In this case, the vote constructed above for the case ‘pref-type = unrestricted’ suffices
if it contains no directed cycles. Otherwise, we will show that it suffices to run the
greedy algorithm (Algorithm 1) from Theorem 3 in Section 4.2.1 over the action space
A restricted to the pairs with mij = mji + 1 (and skip all other comparisons).

First, observe that for candidate pairs (i, j) where mij = mji, the Copeland scores of
the candidates can change by (+1, 0), (0, 0) or (0,+1) for the comparison i� j, skip
or j� i made by the manipulator respectively. Hence it is without loss of generality
that the manipulator skips such comparisons.

Next, we focus on the pairs (i, j) with mij = mji + 1. Let us denote the action
space A restricted to these pairs by Ares. For such pairs, we claim that if there
exists a winning vote for the manipulator with pref-type = acyclic, then there must
also exist a winning vote with pref-type = total+acyclic over Ares. This claim can
be proved as follows: Let �acyc be the restriction of a winning acyclic vote to Ares.
We will argue that �acyc can be transformed into a total and acyclic vote �tot+acyc

such that the latter is also a winning vote. In order to see this, notice that for any
(i, j) ∈ Ares, the Copeland scores of i and j can change by (0, 0), (0, 0) or (−1, 0)
depending on whether the manipulator votes i�j, skip or j�i respectively. Therefore,
a skipped comparison between a pair of candidates (i, j) in �acyc can be replaced
with a strict comparison (either i�j or j�i) without increasing the Copeland score
of either i or j. We will now argue that such a replacement does not introduce any
new directed cycles in �acyc. This is because either the replacement i� j suffices,
or there must be a directed path in �acyc consisting of a series of comparisons of
the form j� j1, j1� j2, . . . , jk� i that forbids the introduction of i� j. In this case,
the replacement j� i can be used instead. Note that both i� j and j� i cannot be
forbidden in this manner, since that would imply that �acyc was cyclic to begin with.

Thus, any skipped comparison in �acyc can be replaced with a strict comparison,
and, as a result, any acyclic winning vote �acyc can be transformed, without loss
of generality, into another winning vote �tot+acyc that is total and acyclic. This
transformation reduces the search space to solutions with pref-type = total+acyclic
over Ares, for which the greedy algorithm from Theorem 3 suffices.

(2) α = 1

(i) pref-type = unrestricted

In this case, the manipulator tries to avoid ties between pairs of candidates in A. This
is because for any pairwise comparison between the non-distinguished candidates, it is
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strictly better for the manipulator to have a clear winner (resulting in exactly one of
the two candidates getting 1 point while the other gets 0) instead of both candidates
getting a point each because of a tie. Therefore, the manipulator skips all comparisons
in A except the ones that are already tied on the basis of the non-manipulators’ votes
(i.e., mij = mji). For such pairs, just like in the previous case, the manipulator faces
the S-Elimination subproblem with S = [(1, 0), (0, 1)], which is efficiently solvable.

(ii) pref-type = total

In this case, the manipulator faces the additional constraint that no comparison can
be skipped. Notice that all comparisons skipped by the manipulator for the above
case are of the form mij = mji + 1. For each such pair, the manipulator avoids a tie
by simply voting i� j.

(iii) pref-type = acyclic

In this case, the vote constructed above for the case ‘pref-type = unrestricted’ suffices
if it contains no directed cycles. Otherwise, just like in Copeland0-Manipulation, it
can once again be shown that any valid vote consists entirely of skipped comparisons
except for the candidate pairs (i, j) with mij = mji, for which the manipulator must
provide strict comparisons of the form i� j or j� i. As before, such a vote can be effi-
ciently computed by using the greedy algorithm (Algorithm 1) suggested in Theorem 3
as a subroutine, where the input to the algorithm is the action space A restricted to
the candidate pairs with mij = mji.

Case (b): Copeland0.5-Manipulation when A = general graph and pref-type ∈ {acyclic,
unrestricted}.

(i) pref-type = unrestricted

Observe that for each candidate pair (i, j) where mij = mji + 1, the Copeland scores
of the candidates can change by (0, 0), (0, 0) or (−0.5,+0.5) depending on whether
the manipulator votes i� j, skip or j� i respectively. Similarly, for each candidate
pair (i, j) where mij = mji, the Copeland scores of the candidates (i, j) can change
by (+0.5,−0.5), (0, 0) or (−0.5,+0.5) for the votes i� j, skip or j� i of the manipulator
respectively. By using the natural extension of the normalization scheme described in Sec-
tion 2.9 for the Mixed-Elimination problem, the manipulation problem can be reduced
to Mixed-Elimination(S1,S2) with S1 = [(1, 0), (0, 1)] and S2 = [(2, 0), (1, 1), (0, 2)]. The
latter is efficiently solvable using the max-flow techniques of Kern and Paulusma (2004).

(ii) pref-type = acyclic

In this case, the vote constructed above for the case ‘pref-type = unrestricted’ suffices if
it contains no directed cycles. Otherwise, we will argue that any such feasible but cyclic
vote can be transformed into an equivalent acyclic vote by ‘ironing out’ all directed cycles.
Specifically, we will show that the series of strict comparisons in any directed cycle of
the form i1� i2, i2� i3, . . . , ik−1� ik, ik� i1 can be transformed to a series of skipped
comparisons without affecting the Copeland score of any candidate.

We start by focusing on the candidate pairs (i, j) with mij = mji + 1. Recall that for
such pairs, the Copeland scores of i and j can change by (0, 0), (0, 0) or (−0.5,+0.5)
depending on whether the manipulator votes i� j, skip or j� i respectively. Therefore,
any i� j comparison in this case can be replaced with an equivalent skip comparison
without changing the Copeland score of either i or j. Hence, we can assume, without loss
of generality, that any strict comparison in this case is of the form j� i.
Next, consider the candidate pairs (i, j) with mij = mji. For such pairs, the Copeland
scores of i and j can change by (+0.5,−0.5), (0, 0) or (−0.5,+0.5) depending on whether
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the manipulator votes i� j, skip or j� i respectively. It is easy to see that there is no
way of replacing a strict comparison with an equivalent skip comparison in this case. As
a result, strict comparisons of both forms i� j and j� i are possible for such pairs.

In summary, there can be three kinds of strict comparisons in the manipulator’s vote:

(1) j� i for pairs (i, j) with mij = mji + 1,

(2) j� i for pairs (i, j) with mij = mji, and

(3) i� j for pairs (i, j) with mij = mji.

Notice that in each case, replacing a strict comparison i1� i2 with a skip vote
amounts to an increase of 0.5 in the Copeland score of i2, and a decrease of 0.5
in the Copeland score of i1. Therefore, for any given directed cycle of the
form i1� i2, i2� i3, . . . , ik−1� ik, ik� i1, replacing each strict comparison with a skip
comparison amounts to a simultaneous increase and decrease of 0.5 in the Copeland score
of each candidate, implying that the Copeland scores of all the candidates stay the same.
Hence, any directed cycle can be ironed out in this manner without loss of generality.

Our next result shows that Copelandα-Manipulation is NP-complete for all
α ∈ Q ∩ (0, 1) \ {0.5} when A is a bipartite or complete graph and pref-type ∈ {acyclic,
unrestricted} (see Table 4 in Section 1). We show a reduction from S-Elimination with
S = [(1/α, 0), (1, 1), (0, 1/α)], which is known to be NP-complete for all α ∈ Q ∩ (0, 1) \ {0.5}
(refer to Theorem 1 in Section 2.8). Our proof closely follows the template of the proof of The-
orem 5 for pBorda-Manipulation.

Theorem 10. Copelandα-Manipulation is NP-complete for all α ∈ Q ∩ (0, 1) \ {0.5} when
A ∈ {bipartite, complete, general graph} and pref-type ∈ {acyclic, unrestricted}.

Proof. The problem is clearly in NP. Just like in the proof of Theorem 5, we reduce from the S-
Elimination instance of Kern and Paulusma (2004) with S = [(1/α, 0), (1, 1), (0, 1/α)]. That
is, we once again start from an instance of S-Elimination that consists of seven groups of
teams, namely W,W,R,X, Y ,X and Y , shown as circles, squares and triangles in Figure 5a.
The distinguished team i∗ (not shown in the figure) has no remaining games and has an initial
score of 0. The current scores of the teams are as follows:

• when 0 < α < 1
2 : W (−1− (δ − 1)/α), W (−1), R(−max{1/α, 3}), X(−1− 1/α),

Y (−1− 1/α), X(−1), and Y (−1), and

• when 1
2 < α < 1: W (−1), W (−1− 1/α), R(−max{2/α, 3}), X(−1), Y (−1),

X(−1− (δ − 1)/α), and Y (−1− (δ − 1)/α).

In each of the above cases, δ(·) denotes the degree function of the graph G corresponding to the
set of remaining games. Besides, for each remaining game, the teams from W , X and Y should
be considered the away team. The NP-completeness of S-Elimination for both ranges of α
stated above follows directly from Theorem 1 in Section 2.8.

The reduced Copelandα-Manipulation instance 〈Π, i∗,A, pref-type〉 is constructed as
follows:

• The set of candidates [n] consists of

– a candidate i for each team i ∈ [N ] (including a candidate i∗ corresponding to the
distinguished team i∗), and
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– the dummy candidates16 D1, . . . , D5. Hence, there are n = N+5 candidates overall.

• The action space A of the manipulator corresponds to the set of remaining games G.

• The set of non-manipulators consists of a single voter, say u1 (hence m = 2). This means
that in order to specify the voting profile, we only need to describe the vote of u1, as below
(all comparisons that are not explicitly specified should be considered as skipped):

– when 0 < α ≤ 1
3 : In this case, the vote of u1 is given by:

∗ {D1}�u1 {W,W,X, Y ,X, Y },
∗ {i∗,Wδ=1,W ,X, Y }�u1 {D2},
∗ {D2}�u1 {Wδ=2,Wδ=3, R,X, Y },
∗ {i∗,Wδ=1,Wδ=2,W ,R,X, Y ,X, Y }�u1 {D3}, and

∗ {D3}�u1 {Wδ=3}.
– when 1

3 < α < 1
2 : In this case, the vote of u1 is given by:

∗ {D1}�u1 {W,W,R,X, Y ,X, Y },
∗ {i∗,Wδ=1,W ,R,X, Y }�u1 {D2},
∗ {D2}�u1 {Wδ=2,Wδ=3, X, Y },
∗ {i∗,Wδ=1,Wδ=2,W ,R,X, Y ,X, Y }�u1 {D3},
∗ {D3}�u1 {Wδ=3}, and

∗ {D4, D5}�u1 {R}.
– when 1

2 < α ≤ 2
3 : In this case, the vote of u1 is given by:

∗ {D1}�u1 {W,W,X, Y ,X, Y },
∗ {i∗,W,W,X, Y ,Xδ=1, Yδ=1}�u1 {D2},
∗ {D2}�u1 {Xδ=2, Yδ=2, Xδ=3, Yδ=3, R},
∗ {i∗,W,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D3}, and

∗ {D3}�u1 {W,R,Xδ=3, Yδ=3}.
– when 2

3 < α < 1: In this case, the vote of u1 is given by:

∗ {D1}�u1 {W,W,R,X, Y ,X, Y },
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1}�u1 {D2},
∗ {D2}�u1 {Xδ=2, Yδ=2, Xδ=3, Yδ=3},
∗ {i∗,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D3},
∗ {D3}�u1 {W,Xδ=3, Yδ=3}, and

∗ {D4, D5}�u1 {R}.

• Finally, pref-type is set to either acyclic or unrestricted.

The equivalence of the two solutions follows from the arguments in Theorem 5.
Once again, just like in Theorem 5, the graph G in the original sports instance (Figure 5a)

is bipartite and any winning assignment of the remaining games in G is acyclic without loss of
generality. As a result, the same holds for the reduced instance as well.

Finally, by using two non-manipulators (instead of one), it is possible to use the same
procedure as above to show NP-completeness of Copelandα-Manipulation whenA = complete

16In order to ensure that no dummy candidate ever wins the election no matter how the manipulator chooses to
vote, we can add q > N+4α

1−α additional dummy candidates, each of which loses to all the candidates representing
the teams and ‘plays a draw’ with all the other dummy candidates. This is because adding q dummy candidates
gives each team candidate an additional score of q, while increasing the score of any dummy candidate by at
most α(q+ 4). Overall, therefore, we only require that q−α(q+ 4) > N , which gives the aforementioned bound.
We keep the description of the reduced instance simple by avoiding this technical detail.
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graph. Indeed, in the above proof, for candidate pairs outside the bipartite graph A, we set
up the non-manipulators’ votes in a 2:0 configuration in order to nullify the effect that a single
manipulator can have. This way, the manipulator is effectively forced to solve the manipulation
problem over a bipartite space even when A is a complete graph. The votes of the non-
manipulators involving the dummy candidates can be similarly constructed.

Our final result (Theorem 12) shows that Copelandα-Manipulation is NP-complete for
all α ∈ Q∩ (0, 1) when the manipulator is required to provide total preferences over a bipartite
or complete graph. The reduction is from Mixed-Elimination(S1,S2) with S1 = [(1, 0), (0, 1)]
and S2 = [(1−α, 0), (0, α)], which is shown to be NP-complete in Lemma 11 for all α ∈ Q∩(0, 1)
via reduction from 3-D Matching by a proof similar to that of Lemma 6.

Lemma 11. For all α ∈ Q ∩ (0, 1), Mixed-Elimination(S1,S2) with S1 = [(1, 0), (0, 1)]
and S2 = [(1 − α, 0), (0, α)] where the set of remaining games G induces a bipartite graph is
NP-complete.

Proof. Our proof closely follows that of Lemma 6. Since membership in NP is clear, we proceed
to show a polynomial time reduction from a variant of 3-D Matching where each base element
occurs in at most three triples. This variant is known to be NP-complete (Garey and Johnson,
1979, Problem SP1 on page 221).

As before, we treat the vertices of the matching graph of the given 3-D Matching instance
as teams and the edges as the set of remaining games between teams (refer to Figure 6).
The games in the upper half of the corresponding sports instance graph are scored according
to S1 = [(1, 0), (0, 1)] and those in the lower half are scored according to S2 = [(1−α, 0), (0, α)],
shown as solid and dashed edges in Figure 6.

Construction of the reduced instance: Given an instance 〈W,X, Y,R〉 of 3-D Matching,
we construct an instance 〈s, i∗,G, η〉 of Mixed-Elimination(S1,S2) as follows:

• the set of teams [N ] is the union of the setsW,X, Y,W,X, Y ,R (i.e., one team per element)
along with the distinguished team i∗,

• the set of remaining games G is the set of all solid and dashed edges in the matching
graph,

• the assignment function η is such that all games involving teams from W are scored
according to S1, while all other games in G are scored according to S2. Furthermore, for
any game, a team higher up in the matching graph should be considered the away team,
and

• the current score of the team i∗ is fixed at 0, without loss of generality.

The group-wise excess scores of all teams are: W (−1), W (−1), R(−max{1, 2α}),
X(−max{α, 1− α}), Y (−max{α, 1− α}), X(−(δ − 1)(1− α)) and Y (−(δ − 1)(1− α)).

The equivalence of solutions follows from arguments similar to those in Lemma 6. Finally,
observe that since the matching graph is bipartite, the same holds for the graph G induced by
the set of remaining games. This completes the proof of Lemma 11.

Theorem 12. Copelandα-Manipulation for all α ∈ Q∩ (0, 1) when A ∈ {bipartite, complete
graph} and pref-type = total is NP-complete.

Proof. Our proof uses a polynomial time reduction from the instance of Mixed-
Elimination(S1,S2) with S1 = [(1, 0), (0, 1)] and S2 = [(1 − α, 0), (0, α)] which was shown
to be NP-complete in Lemma 11 even when the graph induced by the set of remaining games is
bipartite. Just like in the proof of Theorem 10, there is a candidate for each team (along with
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a constant number of dummy candidates), and the set of remaining games corresponds to the
action space of the manipulator. We set pref-type = total.

The set of non-manipulators consists of a single voter, say u1 (hence m = 2). This means
that in order to specify the voting profile, we only need to describe the vote of u1, as below (all
comparisons that are not explicitly specified should be considered as skipped):

• j�u1 i for any two teams i ∈ R and j ∈ X ∪ Y such that (i, j) ∈ G.

• i�u1 j for any two teams i ∈ X ∪ Y and j ∈ X ∪ Y such that (i, j) ∈ G.

• The preferences involving the dummy candidates depend on the value of α as follows:

– when 0 < α < 1
2 : In this case, the vote of u1 is given by:

∗ {i∗, X, Y ,Xδ=1, Yδ=1}�u1 {D1},
∗ {D1}�u1 {W,W,R,Xδ=2, Yδ=2, Xδ=3, Yδ=3},
∗ {D2, D3, D4}�u1 {i∗, Xδ=1, Yδ=1},
∗ {D3, D4}�u1 {Wδ=1},
∗ {D4}�u1 {Wδ=2,W ,X, Y ,Xδ=2, Yδ=2},
∗ {D5}�u1 {X,Y ,Xδ=2, Yδ=2, Xδ=3, Yδ=3},
∗ {i∗,W,W,R,Xδ=1, Yδ=1}�u1 {D5},
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D6},
∗ {D6}�u1 {Xδ=3, Yδ=3},
∗ {D7}�u1 {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2},
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D8}, and

∗ {D8}�u1 {Xδ=3, Yδ=3}.

– when 1
2 ≤ α < 1: In this case, the vote of u1 is given by:

∗ {i∗, R,X, Y ,Xδ=1, Yδ=1}�u1 {D1},
∗ {D1}�u1 {W,W,Xδ=2, Yδ=2, Xδ=3, Yδ=3},
∗ {D2, D3, D4}�u1 {i∗, X, Y ,Xδ=1, Yδ=1},
∗ {D3, D4}�u1 {R,Wδ=1},
∗ {D4}�u1 {Wδ=2,W ,Xδ=2, Yδ=2},
∗ {D5}�u1 {Xδ=2, Yδ=2, Xδ=3, Yδ=3},
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1}�u1 {D5},
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D6},
∗ {D6}�u1 {Xδ=3, Yδ=3},
∗ {D7}�u1 {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2},
∗ {i∗,W,W,R,X, Y ,Xδ=1, Yδ=1, Xδ=2, Yδ=2}�u1 {D8}, and

∗ {D8}�u1 {Xδ=3, Yδ=3}.

The equivalence of the solutions follows from the arguments similar to those in Theorem 5.
Moreover, since the graph G in the original sports instance is bipartite, the manipulation problem
continues to be NP-complete when the action space A is bipartite. Finally, the above proof can
be easily extended to the case A = complete graph using the techniques described in the proof
of Theorem 10.
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4.3 Parameterized Complexity Results

Our classification of the parameterized complexity of pBorda-Manipulation for all combi-
nations of the considered parameters is summarized by Theorem 13 (also refer to Table 5 in
Section 1). We remark that we have no explicit restrictions on the type of preference relation
in the manipulator’s vote (i.e., pref-type = unrestricted). Before providing the formal results,
we briefly motivate the choice of parameters used in this study.

Motivation for the choice of parameters: In the parameterized studies of computa-
tional problems that arise in the context of voting, a commonly used parameter is the number
of candidates, n (Bartholdi III et al., 1989a; Conitzer et al., 2007; Betzler et al., 2009a; Fal-
iszewski et al., 2009b; Dorn and Schlotter, 2012; Yang, 2014; Xia, 2014). We observe that for
any pairwise voting rule that is easy to evaluate, the problem of manipulation by a single ma-
nipulator is trivially FPT for this choice of parameter, because even a brute-force search over
all possible votes of the manipulator will yield the desired running time (i.e., O(3n

2
)). The

other natural choice of parameter is the number of voters. However, we know from Remark 2
that pBorda-Manipulation is NP-complete even with twelve non-manipulators. Given the
extreme behaviors on the two obvious choices of parameters, we turn to the action space of the
manipulator A and try to understand how the problem complexity is influenced by parameters
associated with the structure of A.

We observe that the complexity of pBorda-Manipulation varies considerably with the
structure of the action space A. On one hand, we have the tractability result from Theorem 3
which states that pBorda-Manipulation is efficiently solvable when A is a tree/forest. On the
other extreme, we know from Theorem 8 that pBorda-Manipulation can be computationally
intractable when the action space A is the complete graph. Given these two extremes, we follow
the distance from triviality approach in parameterized analysis (Guo et al., 2004) and consider
parameters that measure how far the given instance is from the class of tractable instances (i.e.,
the degree of closeness to being a tree or a forest). This motivates the choice of parameters such
as treewidth (tw), feedback vertex set (fvs) and maximum degree (∆), and upper/lower bounds
on these parameters such as pathwidth (pw) and vertex cover (vc) (refer to Section 2.7 for formal
definitions). Interestingly, a similar set of parameters was recently used in the parameterized
complexity analysis of the closely-related S-Elimination problem (Cechlárová et al., 2016),
and studying the influence of these parameters on the complexity of pBorda-Manipulation
allows us to compare the complexity landscapes of the two problems (Remark 9).

Overview of our results: Our first set of results shows that the manipulation problem is,
somewhat surprisingly, para-NP-complete for (a) the maximum degree parameter, and (b) any
combination of the parameters in {vc, fvs, pw, tw}. This already establishes a contrast to S-
Elimination which, for instance, is in XP when parameterized by the treewidth of the graph
formed by the set of the remaining games (Cechlárová et al., 2016).

On the tractability side, we show that pBorda-Manipulation is FPT when simultaneously
parameterized by maximum degree (∆) and any combination of the other parameters. We ask
if there is a natural parameter that is, in general, smaller than maximum degree (∆), but that
can still provide tractability when combined with some of the other structural parameters. We
discover an answer in the form of a novel parameter called diversity (d), which is a measure of
how many different types of score exchanges the manipulator encounters for any candidate (refer
to Definition 1). Although pBorda-Manipulation turns out to be NP-complete on graphs with
constant diversity (d)—in fact, it remains NP-complete even when the sum of diversity (d) and
maximum degree (∆) is bounded by a constant (Theorem 5)—we obtain an FPT algorithm by
combining diversity with vertex cover (vc), and XP algorithms by combining it with any of
the other parameters in {fvs, pw, tw}. We do not expect to improve this XP result, as the
problem remains W[1]-hard in those cases.

Theorem 13 (Parameterized Complexity). Let P = {vc, pw, fvs, tw, ∆, d} denote the set of
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parameters defined with respect to the action space A. Let X = {vc, pw, fvs, tw} and Y =
{d,∆}. Then,

1. For any Q ⊆ X or Q ⊆ Y, pBorda-Manipulation is NP-complete even when the sum
of the values of all parameters in Q is bounded by a constant.

2. For all Q ⊆ P, pBorda-Manipulation parameterized by Q is in XP if Q contains d
along with any element of X . Further, the problem is FPT if Q contains ∆ along with
any element of X , or if it contains both d and vc.

3. In the case when Q ⊆ P does not contain either ∆ or vc, pBorda-Manipulation is
W[1]-hard when parameterized by Q, even on instances where d is bounded by a constant.

All the claims made in Theorem 13 can be inferred from two algorithmic results and three
reductions, one of which we have already encountered (Theorem 5). We briefly summarize these
main results and their implications.

1. We show that pBorda-Manipulation remains NP-complete even for instances where A
has a vertex cover of size two (Theorem 14). Since a bound on the size of a vertex
cover implies a bound on the size of a feedback vertex set, pathwidth and treewidth, we
have NP-completeness of pBorda-Manipulation even with respect to all parameters
in X combined. Together with Remark 3, which shows NP-completeness of pBorda-
Manipulation on instances of maximum degree ∆ = 3 (and therefore diversity d ≤ 3),
this implies statement 1 of Theorem 13.

2. We use dynamic programming over tree decompositions to show that pBorda-
Manipulation is FPT when parameterized by maximum degree and treewidth (Theo-
rem 16). Since all other parameters in X are larger than treewidth, this gives us an FPT
classification when maximum degree is combined with any subset of parameters in X .
Similarly, we use the result of Lenstra Jr (1983) on Integer Linear Programming
being FPT in the number of variables to show that pBorda-Manipulation is FPT when
simultaneously parameterized by the vertex cover and diversity of A (Theorem 18). These
two results together imply statement 2 of Theorem 13.

3. Finally, we show that pBorda-Manipulation is W[1]-hard when simultaneously param-
eterized by the feedback vertex set and pathwidth of A via an FPT-reduction from Ca-
pacitated Dominating Set (Theorem 15). This proves statement 3 of Theorem 13.

We will now provide formal statements and proofs of the results stated above. Our first result
in this section (Theorem 14) shows NP-completeness of pBorda-Manipulation on instances
with a vertex cover of constant size.

Theorem 14. pBorda-Manipulation is NP-complete when A is a general graph with a vertex
cover of size two and pref-type = unrestricted.

Proof. The problem is clearly in NP. We show NP-hardness by reduction from Partition. We
start with an informal overview to the proof followed by detailed explanations.

Informal idea of the reduction: Recall from Section 2.10 that an instance of Partition
consists of a multiset S of n numbers a1 ≤ a2 ≤ · · · ≤ an which sum to N , and the task is
to decide if there is a subset whose sum is N/2. We will introduce two candidates X and Y
that will serve the purpose of a selection gadget (refer to Figure 7a). Further, we have a
candidate i corresponding to each number ai. The action space A is the complete bipartite
graph with {X,Y } on one side and the candidates {1, 2, . . . , n} on the other. We now aim to
set up the non-manipulators’ votes (with the help of additional dummy candidates that are not
part of the action space A) such that the following are true:
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Figure 7: This figure shows the instance of pBorda-Manipulation constructed in the proof
of Theorem 14. Subfigure (a) shows the action space of the manipulator as dotted lines,
along with the corresponding excess scores. Subfigure (b) shows the configuration of the non-
manipulators’ votes and the resulting score transfers. For each i ∈ [n], the candidate pairs (X, i)
and (Y, i) are both in (2an + 1 − ai) : ai configuration. As a result, a pBorda score of ai/Q
gets transferred from i to X (or Y ) if the manipulator votes X � i (or Y � i), while a transfer
of (2an + 1− ai)/Q happens in the opposite direction for the vote i�X (or i�Y ).

• The excess score of both X and Y is −N/2 units and that of each i is ai/2 units.

• If the manipulator votes X � i (or Y � i), then ai units of pBorda score are transferred
from i to X (or Y ).17 However, if the manipulator votes i�X (or i�Y ), then a large
amount of score is transferred from X (or Y ) to i. In particular, the transferred amount
is greater than ai, and thus offloading it to the other selector Y (or X) will not suffice.
This means that the manipulator never votes i�X (or i�Y ) for any i. Therefore, the
manipulator is required to distribute the combined excess of all i’s, which equals N ,
between the two selectors X and Y , who can together handle an excess of at most N .
This corresponds to solving the given instance of Partition.

Construction of the reduced instance: Given an instance S = {a1, a2, . . . , an} of Parti-
tion, we construct an instance 〈Π, i∗,A, pref-type〉 of pBorda-Manipulation as follows (refer
to Figure 7):

• The candidate set consists of

– the selector candidates X and Y , corresponding to the two partitions,

– a candidate i for each positive integer ai ∈ S (call these the integer candidates),

– the distinguished candidate i∗, and

– the dummy candidates D1, D2, . . . , D4n.

Hence there are (2 + n+ 1 + 4n) = 5n+ 3 candidates overall.

• The action space A for the manipulator is the complete bipartite graph between the
selectors and the integer candidates. That is, A =

{
{∪i∈[N ]{(X, i)}

⋃
{∪i∈[N ]{(Y, i)}

}
.

Note that the distinguished candidate i∗ and the dummy candidates are not part of this
space, and hence their pBorda scores are not affected by the manipulator’s vote.

• Set pref-type = unrestricted.

• We will now describe the construction of the voting profile Π of the non-manipulators.
The set of voters consists of 2Q non-manipulators (where Q = (2an + 1) · (2an + 2)) and
one manipulator, hence m = 2Q+ 1 voters overall.

17Refer to Section 2.4 for details on the score transfer property of the pBorda rule.
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– The votes of the non-manipulators for candidate pairs in the action space (i.e., be-
tween the selectors and the integer candidates) are set up so as to ensure that
the score transfers resulting from the manipulator’s vote are ai

Q (if the manipulator

votes X � i or Y � i) and 2an+1−ai
Q (if the manipulator votes i�X or i�Y ). Thus,

for each i ∈ [n], the candidate pairs (i,X) and (i, Y ) are both in ai : (2an + 1− ai)
configuration, as shown in Figure 7b.

– For each i ∈ [n], the candidate pair (i∗, Di) is in (2an + 1 − ai) : ai configuration
while the candidate pair (i∗, Dn+i) is in ai : (2Q− ai) configuration.

– For each i ∈ [n], the candidate pair (i,D2n+i) is in (2an + 1− 3ai) : 3ai configuration
while the candidate pair (i,D3n+i) is in 2ai : (2Q − 2ai) configuration. Finally, for
each i ∈ [n] and each k ∈ [n]\ i, the candidate pair (i,D2n+k) is in (2an+ 1−ak) : ak
configuration while the candidate pair (i,D3n+k) is in ak : (2Q− ak) configuration.

This finishes the construction of the election instance. It is easy to check that the excess score
of each integer candidate i after this construction is ai

2Q , while that of each selector is −N2Q .
Besides, the scores of the dummy candidates are sufficiently low so that any selector or integer
candidate always has a higher pBorda score than any dummy candidate, regardless of how the
manipulator chooses to vote. As a result, the winning candidate is always one of the candidates
in the action space.

Note that the above reduction is efficient since it uses O(a2n) voters and O(n) candidates.
Also note that the selectors X,Y form a vertex cover of size two, which implies a bound on
the treewidth, pathwidth and feedback vertex set (Figure 1 in Section 1). All other vertices in A
have degree two.

Equivalence of solutions: (⇒) Suppose there exists a partition of S into the sets S1 and S2.
A valid manipulative vote can be constructed from this partition as follows: For each i ∈ [n],
the manipulator votes X � i if ai ∈ S1 or Y � i if ai ∈ S2 and skips all other comparisons.
The final excess pBorda score of each integer candidate i is negative, since ai

2Q −
ai
Q < 0. The

final excess score for each of the selectors equals 0 due to the partition property, making i∗ the
pBorda winner.

(⇐) Suppose there exists a valid manipulative vote that makes i∗ win. We will show that
a valid partition can be constructed from such a vote. First, observe that in any winning vote,
each integer candidate i must lose against at least one of the selectors in order to get rid of its
initial excess. This means that the combined pBorda score that gets transferred from the integer
candidates to the selectors is at least

∑
ak∈S

ak
Q . Next, observe that no integer candidate i can

win a pairwise comparison against any of the selectors. This is because a win against either X
or Y leaves i with an additional score of 2an+1−ai

Q , which is more than what it can offload to
the other selector. This means that no pBorda score gets transferred from the selectors to the
integer candidates. Since the selectors can together handle an inflow of at most

∑
ak∈S

ak
Q ,

any valid manipulative vote must have each integer candidate i lose against exactly one of the
selectors, while the other comparison is skipped. A partition can now be naturally inferred from
such a vote. This completes the proof of Theorem 14.

Remark 9. Notice that Theorem 14 provides a complexity theoretic distinction between
pBorda-Manipulation and S-Elimination. As mentioned earlier, Cechlárová et al. (2016)
showed that S-Elimination is in XP when parameterized by the treewidth of the graph
formed by the set of remaining games. On the other hand, pBorda-Manipulation is para-
NP-complete in the same parameter. Hence, pBorda-Manipulation is necessarily harder than
S-Elimination unless P = NP .

Our next result establishes the W[1]-hardness of pBorda-Manipulation in terms of the
size of a minimum feedback vertex set and the pathwidth of A, even on instances where the
diversity of A is bounded by a constant.
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Theorem 15. pBorda-Manipulation is W[1]-hard when simultaneously parameterized by
feedback vertex set and pathwidth of A, where A is a general graph with constant-sized diversity
and pref-type = unrestricted.

Proof. We will show an FPT reduction from Capacitated Dominating Set to pBorda-
Manipulation with the following properties:

• the feedback vertex set and pathwidth parameters of the action space A of the pBorda-
Manipulation instance are polynomially bounded by the corresponding parameters of
the original Capacitated Dominating Set instance, and

• the number of distinct capacity values in the Capacitated Dominating Set instance is
an upper bound for the diversity of the pBorda-Manipulation instance (up to additive
constants).

These two properties give us the desired hardness implications, since we know from Section 2.10
that Capacitated Dominating Set is W[1]-hard when simultaneously parameterized by feed-
back vertex set and pathwidth (and as a consequence, treewidth), even when there are only a
constant number of distinct capacity values. We start with an informal overview of the proof.

Informal idea of the reduction: Given an instance 〈G, c, k〉 of Capacitated Dominat-
ing Set with G = (V,E), we construct an instance of pBorda-Manipulation consisting of
a source candidate X, two sink candidates—an edge sink Y and vertex sink Y ′—and a can-
didate vi for each vertex vi ∈ V , called a vertex candidate (refer to Figure 8a). For each pair
of vertex candidates (vi, vj) whose corresponding vertices are adjacent in G, we add an edge
candidate representing the edge (vi, vj). The manipulator is allowed to make the following kinds
of comparisons:

• each vertex candidate can be compared with the source and the vertex sink, and

• each edge candidate can be compared with the edge sink and the two vertex candidates
adjacent to it.

The initial excess score of each vertex candidate vi is (φ − 1 − c(vi)) units
(where φ = maxvi∈V c(vi)), while that of the source X is a sufficiently large number. The
large initial excess score of the source forces the manipulator to offload it to at least (|V | − k)
vertex candidates, thus making each of them heavy. Specifically, each vertex candidate that
helps the source shed its excess now has an excess of its own equalling (B+φ−1) units, where B
is a suitably large number. Let H denote the set of all such heavy vertex candidates. Notice
that the action space allows each vertex candidate to offload its excess to the vertex sink and
the edge candidates adjacent to it. If an edge candidate is triggered in this way, then it is
forced to offload its own excess to the edge sink and the other vertex candidate adjacent to
it. The score transfers18 in our reduced instance are set up in a way that makes it necessary
for the manipulator to trigger a distinct edge candidate for each heavy vertex candidate in H.
After this step, all candidates in H that were previously heavy now become light (i.e., with
non-positive excess), while a different set of vertex candidates (say H ′) now become heavy (i.e.,
with a positive excess) due to score inflow from edge candidates triggered earlier. Notice that
at least (|V | − k) edge candidates are triggered in this process. By construction, this is also
the maximum number of edge candidates that can be triggered, since the edge sink cannot
handle any additional score inflow. Therefore, no other edge candidates can be triggered to
accommodate the excess of any candidate in H ′, leaving the manipulator with only the vertex
sink to work with.

Once again, by construction, the excess score of the vertex sink is set up to allow score
inflow from at most k vertex candidates. Moreover, no vertex candidate is allowed to offload

18Refer to Section 2.4 for details on the score transfer property of the pBorda rule.
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more than (φ− 1) units of score to the vertex sink. These constraints force the manipulator to
ensure the following two conditions:

• no candidate in H ′ has an excess of more than (φ− 1) units (otherwise such a candidate
will be left with a positive excess with nowhere to offload it to), and

• |H ′| ≤ k.

In other words, the set H ′ must be such that each candidate in the original heavy set H channels
an excess of 1 toward some candidate in H ′ (via an edge candidate), while no vi ∈ H ′ receives
an inflow of more than c(vi) units in this process. The set H ′ must therefore be a capacitated
dominating set.

The detailed proof that follows describes the prescription of the non-manipulators’ votes
that realize the desired configuration of capacities, excess scores and score transfers.

Construction of the reduced instance: Given an instance 〈G, c, k〉 of Capacitated Dom-
inating Set, we construct an instance 〈Π, i∗,A, pref-type〉 of pBorda-Manipulation as
follows (refer to Figure 8):

• The set of candidates consists of

– the source X, the edge sink Y and the vertex sink Y ′,

– a candidate vi for each vertex vi in G, called a vertex candidate,

– a candidate ej for each edge ej in G, called an edge candidate,

– the distinguished candidate i∗,

– the dummy candidates D1, D2, . . . , D`. These are further divided into five sub-
sets D(1), D(2), . . . , D(5) of different sizes. Overall, there are ` = 3|V | + |E| + 2
dummy candidates.

Hence, there are n = 4|V |+ 2|E|+ 6 candidates overall.

• The action space A is the union of all unordered pairs of candidates connected by dashed
and dotted edges in Figure 8. That is,

A =
{
{∪i∈[|V |]{X, vi}}

⋃
{∪j∈[|E|]{ej , Y }}

⋃
{∪i∈[|V |]{vi, Y ′}}

⋃
{∪i∈[|V |],j∈[|E|]{vi, ej} where vi is adjacent to ej in G}

}
.

Note that the distinguished candidate i∗ and the dummy candidates are not part of the
action space and hence their pBorda scores are not affected by the manipulator’s vote.

• Set pref-type = unrestricted.

• We will now describe the construction of the votes of the non-manipulators. The set of
voters consists of Z non-manipulators and one manipulator, hence m = Z + 1. Here, Z =
(B + φ) · (B + φ+ 1), B = |V |+ |E|+

∑
vi∈V (G) c(vi) and φ = maxvi∈V c(vi). The scores

acquired by the candidates in each step are shown in Table 7.

– For each i ∈ [|V |], the candidate pairs (X, vi) and (Y ′, vi) are in (B+c(vi)) : (φ−c(vi))
and (B + 1) : (φ− 1) configuration respectively. For each i ∈ [|V |] and each j ∈ [|E|]
such that vi is adjacent to ej in G, the candidate pair (vi, ej) is in (B + φ − 1) : 1
configuration. Finally, for each j ∈ [|E|], the candidate pair (ej , Y ) is in 2 : (B+φ−2)
configuration. The vote arrangements and corresponding score transfers after this
step are shown in Figure 8b.
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Figure 8: Subfigure (a) shows the reduced pBorda-Manipulation instance (excluding the
dummy candidates and the distinguished candidate i∗) constructed from the given Capacitated
Dominating Set instance. The action space A of the manipulator is marked via dashed and
dotted edges, and the excess pBorda scores are mentioned next to the corresponding candidates.
The vertex candidates are shown as circles in the middle layer and the edge candidates are
shown as triangles. Subfigure (b) shows the configuration of non-manipulators’ votes for various
candidate-pairs and the resulting scores transfers. For instance, the pair (X, vi) is in (B+c(vi)) :
(φ− c(vi)) configuration. As a result, a pBorda score of (φ− c(vi))/Z gets transferred from vi
to X if the manipulator votes X � vi, while a transfer of (B + c(vi))/Z happens in the opposite
direction for the vote vi�X.

– For each i ∈ [|E|], (B + φ − 2) voters vote (X,Y ′, v1:|V |, e1:|E|, i
∗)�D(1)

i while two
voters vote the opposite.19

– For each i ∈ [|V |], (B + 1) voters vote (e1:|E|, i
∗)�D(2)

i while (φ − 1) voters vote

the opposite. For each i ∈ [|V | − k], B voters vote Y �D(2)
i while φ voters vote the

opposite. For each i ∈ {|V | − k + 1, . . . , |V |}, B + 1 voters vote Y �D(2)
i while (φ−

1) voters vote the opposite. For each i ∈ [|V |], (φ − c(vi)) voters vote X �D(2)
i

while (B + c(vi)) voters vote the opposite. For each i ∈ [|V | − deg(vi)], (B + φ− 1)

voters vote vi�D(2)
i while one voter votes the opposite.

– The candidate pairs (X,D
(3)
1 ), (Y,D

(3)
1 ), (Y ′, D

(3)
1 ) and (i∗, D

(3)
1 ) are in (2φ− c(vi) +

3) : (B−φ+ c(vi)− 3) configuration. For each i ∈ [|V |], the pairs (vi, D
(3)
1 ) are in 5 :

(B+φ−5) configuration. For each j ∈ [|E|], the pairs (ej , D
(3)
1 ) are in (2φ−c(vi)−1) :

(B−φ+ c(vi) + 1) configuration. The candidate pairs (X,D
(3)
2 ), (Y,D

(3)
2 ), (Y ′, D

(3)
2 )

and (i∗, D
(3)
2 ) are in φ : (Z − φ) configuration. For each i ∈ [|V |], the pairs (vi, D

(3)
2 )

are in (φ−c(vi)) : (Z−φ+c(vi)) configuration. For each j ∈ [|E|], the pairs (ej , D
(3)
2 )

are in φ : (Z − φ) configuration.

19We use the shorthand (X,Y ′, v1:|V |, e1:|E|, i
∗)�D(1)

i to represent X �D(1)
i , Y ′�D(1)

i , v1:|V |�D(1)
i ,

e1:|E|�D(1)
i and i∗�D(1)

i . Here, v1:|V | = v1, . . . , v|V | and e1:|E| = e1, . . . , e|E|.
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– For each i ∈ [k], (φ−1) voters vote (X,Y, e1:|E|, i
∗)�D(4)

i while (Z−φ+1) voters vote

the opposite. For each i ∈ [k+ 1], (φ−1) voters vote (v1:|V |)�D
(4)
i while (Z−φ+ 1)

voters vote the opposite. For each i ∈ {k + 1, . . . , |V |}, B voters vote X �D(4)
i

while (Z − B) voters vote the opposite. For each i ∈ {k + 1, . . . , |V |}, 3 voters

vote Y �D(4)
i while (Z − 3) voters vote the opposite.

– For each i ∈ [|V |], (φ−1) voters vote (Y, Y ′, e1:|E|, i
∗)�D(5)

i while (B+1) voters vote

the opposite. For each i ∈ [|V | − 1], one voter votes v1:|V |�D
(5)
i while (B + φ − 1)

voters vote the opposite.

This finishes the construction of the election instance. Note that the reduction is efficient
since it uses O((|V |+ |E|)2) voters and O(|V |+ |E|) candidates. Also note that the reduction is
parameter preserving, in that if the pathwidth and the feedback vertex set of the Capacitated
Dominating Set instance are w and t respectively, then the same parameters for the action
space A in the pBorda-Manipulation instance are O(w2) and (t+3) respectively.20 Moreover,
since the original Capacitated Dominating Set instance has O(1) distinct capacity values,
there can only be O(1) distinct score exchanges due to the addition of the manipulator’s vote
(refer to Figure 8b). Therefore, the diversity of the reduced election instance is a constant.

Equivalence of solutions: (⇒) Suppose S ⊆ V (G) is a valid capacitated dominating set,
and let f : V (G) \ S → S be the corresponding assignment. Then, a winning vote can be
constructed as follows: First, the manipulator triggers score transfers from the source X to the
vertex candidates in V (G) \ S by voting vi�X for all vi ∈ V (G) \ S. This brings the excess
score of X below zero, and results in an excess of (B + φ− 1)/Z for each vi ∈ V (G) \ S. Next,
for each such vi, the manipulator votes ej � vi where ej is the edge connecting vi and f(vi)
in G. After this step, the excess scores of all candidates in V (G) \ S become zero. Each edge
candidate ej chosen above now acquires an excess score of (B+φ− 1)/Z. For each such ej , the
manipulator votes Y � ej and f(vi)� ej . This results in a score transfer of 1/Z and (B+φ−2)/Z
to f(vi) and Y respectively. The excess score of ej now becomes zero, while each f(vi) acquires
an excess of (φ − 1)/Z, since it experiences score inflows from c(vi) candidates in V (G) \ S of
magnitude 1/Z each. The excess score of Y also becomes zero. In the final step, the manipulator
votes Y ′� f(vi) for all f(vi) ∈ S. This step triggers a score transfer of (φ−1)/Z from each f(vi)
to the vertex sink Y ′, resulting in a final excess score of zero for all candidates in S as well as
for Y ′, making i∗ the pBorda winner.

(⇐) Suppose there exists a valid manipulative vote that makes i∗ win. Without loss of
generality, X must lose against at least (|V |−k) vertex candidates in order to offload its excess.
Let S′ denote the set of vertex candidates that X loses to. Hence, |S′| ≥ |V |−k. Each candidate
in S′ acquires an excess of (B+φ−1)/Z, which it can offload to the vertex sink Y ′ and the edge
candidates adjacent to it. It is easy to see that offloading the excess to Y ′ alone doesn’t suffice,
and hence, without loss of generality, each candidate in S′ must offload its excess to at least
one of the edge candidates adjacent to it. Notice that at most (|V | − k) edge candidates can be
triggered in this manner, since each such edge candidate is, in turn, forced to offload its own
excess by transferring a score of (B+φ−2)/Z to the edge sink Y , and there can only be (|V |−k)
such transfers without giving positive excess to Y (it is easy to check that no transfers happen
in the reverse direction). As a result, each candidate in S′ offloads its excess to exactly one edge
candidate adjacent to it (which also means that |S′| = |V | − k), and ends up with an excess

20Notice that if the pathwidth of the original instance is w, then the size of each bag in a path decomposition
is at most (w + 1). In order to obtain a path decomposition for the reduced instance, we will add to each bag
(in the path decomposition of the original instance) the source and the two sink candidates, along with the edge
candidates corresponding to the edges originally present in that bag. The size of the largest bag in the new path
decomposition is at most (w + 1) + 3 +

(
w+1
2

)
. Thus, the pathwidth of the reduced instance is O(w2). Similarly,

a feedback vertex set of the reduced instance can be obtained by combining the feedback vertex set for the original
instance with the source and the two sink vertices, giving a size bound of (t+ 3).
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of zero. This excess is transferred via the edge candidate to another vertex candidate. Let S
denote the set of vertex candidates that witness a score inflow from the candidates in S′. It
is easy to see that S ∩ S′ = ∅ (otherwise some candidate in S′ gains a positive excess score
with nowhere to offload it to). Notice that the only outlet for the candidates in S to offload
their excess to is the vertex sink Y ′ since (a) no edge candidate can be triggered anymore, and
(b) a reverse transfer to the source X is not possible as there is no remaining outlet for X. As
mentioned earlier, the vertex sink can handle score transfers from at most k vertex candidates,
of magnitude (φ − 1)/Z each. Therefore, the set S must be such that (a) no candidate in S
has an excess score of more than (φ − 1)/Z after the transfers from S′ have happened, and
(b) |S| ≤ k. Putting together the above observations, we get that, without loss of generality,
any winning vote requires the manipulator to select a set S of candidates such that |S| ≤ k,
and each candidate in S witnesses a score inflow from at most c(vi) candidates in S′. Such a
set S constitutes a capacitated dominating set. This completes the proof of Theorem 15.

Remark 10. Cechlárová et al. (2016) have shown that except for scoring systems of the
form S = {(i, t− i) : 0 ≤ i ≤ t} for some t ∈ N, S-Elimination is W[1]-hard separately in
the parameters feedback vertex set and pathwidth. We know from the proof of Theorem 5
that S-Elimination with S = [(3, 0), (1, 2), (0, 3)] is a special case of pBorda-Manipulation.
Hence, the results of Cechlárová et al. (2016) can be used to infer W[1]-hardness of pBorda-
Manipulation in each of these two parameters separately. Our result, however, is stronger
since we show a hardness result in the two parameters combined.

Our first algorithmic result is about fixed-parameter tractability of pBorda-Manipulation
in the parameters treewidth and maximum degree of A.

Theorem 16. pBorda-Manipulation is solvable in time O
(
∆O(dw

2)(n logm)O(1)
)
,

where ∆, w and d denote the maximum degree, treewidth and diversity of A respectively.

Proof. Let T = (T, {Bt}t∈V (T )) be a nice tree decomposition of A, where T is a rooted binary
tree with root node r. Recall from Section 2.7 that a nice tree decomposition has, in addition
to the root and leaf nodes, the following three kinds of internal nodes: introduce, forget and
join. Our goal for the rest of the proof will be to follow the standard bottom-up dynamic
programming (DP) approach for nice tree decompositions (Cygan et al., 2015) by providing
explicit DP recurrences for each type of node. Figure 9 shows an example where the main ideas
involved in the proof have been instantiated on a toy election instance.

We start with the necessary notation. For any t ∈ V (T ), let At denote the restriction of
the space A to the subgraph induced by the node t and its descendants in T . That is, At is
the graph A restricted to the vertex set Bt ∪ {

⋃
Bt′ : t′ ∈ descT (t)}. Let sNM

i ∈ R denote the
pBorda score of candidate i (corresponding to vertex vi) resulting from the votes of the non-
manipulators. For any candidate i, let Li denote the set of all pBorda score values that i can
attain due to all possible votes of the manipulator over A. For example, in Figure 9c, the set of
all pBorda score values that can be attained by v4 is {−1,−3/2}. It can be shown that the size of
the set Li, for any candidate i, is at most ∆3d.21 Similarly, for each bag Bt, let St ⊆

�

vi∈Bt Li
be the set of all tuples of pBorda scores of the vertices in Bt resulting from all possible votes of
the manipulator. Thus, |St| ≤ ∆3d(w+1) for any t ∈ T . We will call the set St the score set of
node t.

In addition to the score sets, we will require the notion of an orientation function, which
prescribes an orientation for the edges in a graph (corresponding to a vote of the manipulator),
and an update function, which specifies the change in pBorda scores of the vertices resulting

21This is because a vertex vi is adjacent to at most ∆ edges in A, and there are only d distinct types of score
transfer vectors possible across these edges. For each possible score transfer vector, the manipulator has three
available choices, amounting to at most 3d distinct score exchanges overall. Hence, the total number of distinct
score values that vi can take is at most the number of ways in which ∆ identical balls can be thrown into 3d bins.

48



v1

v2 v3

v4

i∗

[0]

[0] [0]

[-1]

[0]
1
:0

0
:1

0:1

0
:1

(a) Action space A

v2 v3

v1, v2 v3, v4

v1, v2, v3 v1, v3, v4

v1, v3 v1, v3

v1, v3

v1

Leaf

Introduce v2

Introduce v1

Introduce v3

Forget v2

Join

Forget v3

Root/Forget v1

Forget v4

Introduce v1

Introduce v4

Introduce v3

Leaf

(b) A nice tree decomposition of A

Set of all possible pBorda score values attainable by v3 = {1/2, 0,−1/2,−1}
Set of all possible pBorda score values attainable by v4 = {−1,−3/2}

Score sets v3� v4 skip v4� v3 realized by?

for (v3, v4)

(1/2,−1) 0 0 0 Not realizable

(1/2,−3/2) 1 0 0 v3� v4, skip other comparisons

(0,−1) 0 1 1 (i) skip all comparisons

(ii) v4� v3, skip others

(0,−3/2) 1 0 0 v3� v4, v2� v3, skip others

(−1/2,−1) 0 1 1 (i) v1� v3, skip others

(ii) v4� v3, v1� v3, skip others

(−1/2,−3/2) 1 0 0 v3� v4, v1� v3, v2� v3, skip others

(−1,−1) 0 1 1 (i) v1� v3, v2� v3, skip others

(ii) v4� v3, v1� v3, v2� v3, skip others

(−1,−3/2) 0 0 0 Not realizable

(c) DP table for the bag {v3, v4}

Figure 9: Illustrating the main ideas in the proof of Theorem 16 on a toy instance.
Subfigure (a) shows the action space A of the manipulator for an election instance consisting of the candi-
dates i∗, v1, . . . , v4. The solid edges indicate the comparisons that the manipulator is allowed to make. The label
“a : b” for an edge (vi, vj) means the pair is in a : b configuration (based on the votes of the non-manipulators).
For example, the pair (v1, v3) is in 0 : 1 configuration. The pBorda scores of the candidates are mentioned in
square brackets. Subfigure (b) shows a nice tree decomposition of A, starting from the leaf nodes at the bottom
(denoted by the empty bags) and ending with the root node at the top (also empty). Observe that this decom-
position satisfies all the properties stated in Section 2.7. Subfigure (c) shows the DP table for the bag {v3, v4}
shaded in gray in Subfigure (b). The rows of this table denote all possible score combinations for the vertices
in this bag. The second, third and fourth columns consist of binary indicators denoting whether a particular
score tuple can be realized by a vote of the manipulator that is consistent with the orientation specified by the
column. Thus, for instance, the score tuple in the first row is not realizable by any vote of the manipulator. This
is because the score of v4 is fixed at -1, which already rules out v3� v4. Hence, the manipulator must either
skip the comparison, or vote v4�v3, neither of which change the pBorda score of either v3 or v4. Next, observe
that even if v3 wins the comparisons against v1 and v2, its pBorda score cannot increase. Thus, the largest
pBorda score that v3 can attain in this case is 0. As a result, the score tuple (1/2,−1) is not realizable under any
orientation of the edges in the bag {v3, v4}.
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from a given orientation. Formally, an orientation function φG : E(G) → {−1, 0,+1} for a
graph G assigns an orientation for each edge in E(G). The range {−1, 0,+1} encodes the three
choices available to the manipulator for each edge. Denote by ΦG the space of all orientations
of the set of edges E(G). For a fixed profile Π of the votes of the non-manipulators, an update
function uG : V (G) × ΦG → R takes as input a vertex v ∈ V (G) and an orientation φG ∈ ΦG

of graph G, and returns the change in the pBorda score of v resulting from the vote φG of the
manipulator. For notational simplicity, we will write φ instead of φG whenever the underlying
graph G is clear from the context.

We will now describe the information stored at each node of T (refer to Figure 9c for an
example). Essentially, at each node t, the algorithm stores a binary table Tt, where the rows
correspond to the score vectors (i.e., elements of the score set St) and the columns correspond
to orientations of the edges inside the corresponding bag Bt. The (i, j)th entry of this table,
namely Tt(i, j), is 1 if the score vector in row i is realizable under the orientation in column j,
and is 0 otherwise. A score vector (s1, . . . , sτ ) ∈ St for the vertices (v1, . . . , vτ ) of a bag Bt is
said to be realizable under an orientation φBt if there exists an orientation φAt ∈ ΦAt of the
induced subgraph At for which the following conditions hold:

1. The projection of φAt onto the bag Bt is precisely φBt .

2. For each vertex vi ∈ Bt, the corresponding score value si should be attained under φAt .
That is,

sNM
i + uAt(vi, φAt) = si.

3. For each vertex vj ∈ At \Bt, the excess score constraint should be satisfied. That is,

sNM
j + uAt(vj , φAt) ≤ s∗,

where s∗ is the (fixed) pBorda score of the distinguished candidate i∗.

Thus, the largest DP table has at most ∆3d(w+1) rows and 3(w+1)2 columns, hence O(∆dw2
) bits

in size overall. Note that if an entry in the table Tr for the root node r is 1, then there must
be a score vector (i.e., a row in the table) that is realizable by some vote of the manipulator
(i.e., a column) over the entire space A, implying that pBorda-Manipulation has a valid YES
instance. This is because the root node in a nice tree decomposition corresponds to an empty
set, and thus Ar = A.

We will now describe the procedure for updating the DP tables for all node types.

1. Introduce node: Let t be a node that introduces a vertex v, and let t′ be the unique child
of t in T . Let Bt′ = {v1, . . . , vτ} and, as a result, Bt = {v1, . . . , vτ , v}. As described above,
the rows of Tt correspond to elements of St and the columns correspond to orientations of
edges in Bt. Since t is the parent node of t′, any orientation φ of the edges in Bt induces
an orientation φBt′ of the edges in Bt′ . Thus, by looking at all possible ways in which
the edges in Bt adjacent to v can be oriented (call any such orientation φv) and checking
realizability for each such orientation, we can construct the DP table for node t as follows:

Tt((s1, . . . , sτ , sv), φ) =



1 if sNM
v + uBt(v, φ) = sv and Tt′((s′1, . . . , s′τ ), φBt′ ) = 1

where s′i = si − uBt(vi, φ) for all vi ∈ Bt \ {v} and

φBt′ ∪ φv = φ;

0 otherwise.

Here, the condition sNM
v + uBt(v, φ) = sv checks whether v attains the score sv under the

orientation φ, while the condition Tt′((s′1, . . . , s′τ ), φBt′ ) = 1 checks for realizability of the
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score vector (s′1, . . . , s
′
τ ) under the orientation φBt′ obtained by restricting φ to the child

node Bt′ . The time taken in updating each entry of the table Tt is dominated by the
computation of the update function, which is O(w logm), since computing the updated
score for each candidate pair requires O(logm) effort, and there are at most O(w) such
pairs. Therefore, DP update for an introduce node takes O(∆dw2

w logm) time overall.

2. Forget node: Let t be a node that forgets a vertex v, and let t′ be the unique child of t
in T . Let Bt′ = {v1, . . . , vτ , v} and, as a result, Bt = {v1, . . . , vτ}. The DP updates for
the forget node are similar to those for the introduce node described above, since we once
again iterate over all possible orientations φv (this time in Bt′) and check if the adjusted
score vector has an entry with 1 in the child DP table. Thus,

Tt((s1, . . . , sτ ), φ) =



1 if s′v ≤ s∗ and Tt′((s′1, . . . , s′τ , s′v), φBt′ ) = 1

where s′i = si + uBt′ (vi, φBt′ ) for all vi ∈ Bt

and φBt′ = φ ∪ φv;

0 otherwise.

For a similar reason as before, this step takes O(∆dw2
w logm) time.

3. Join node: Let t be a node that joins the child nodes tL and tR such that Bt = BtL =
BtR = {v1, . . . , vτ}. We will once again iterate over all possible orientations of the edges
of the bag and check if a pair of score assignments – one for each child bag – add up to
the score assignment for the parent node under the given orientation. Thus,

Tt((s1, . . . , sτ ), φ) =


1 if TtL((s′1, . . . , s

′
τ ), φ) = 1 and TtR((s′′1, . . . , s

′′
τ ), φ) = 1

where s′i + s′′i = si for all vi ∈ Bt;

0 otherwise.

The time taken is O(∆dw2 ·∆dw2
), since we need to scan an entire column of the DP table

of one of the child nodes to iterate over all s′i (or s′′i ), which requires O(∆dw2
) time per

entry of the parent table. Thus, O(∆O(dw
2)) time overall.

Finally, we can assume, without loss of generality, that any nice tree decomposition with
treewidth w has at most O(w ·n) nodes (Cygan et al., 2015). Therefore, the overall running time
of our algorithm is O(∆O(dw

2) · (w logm) · (w · n)), or more concisely O
(
∆O(dw

2)(n logm)O(1)
)
,

as desired.

Note that since d ≤ ∆ for the pBorda rule, the running time above is FPT in ∆ and the
treewidth of A. Moreover, since ∆ ≤ n, the running time is also in XP with respect to the
diversity d and treewidth w of A. We restate these observations as the following corollary:

Corollary 17. pBorda-Manipulation is FPT when parameterized by maximum degree and
treewidth of A, and in XP when parameterized by diversity and treewidth of A.

Our next algorithmic result pertains to graphs of bounded vertex cover and bounded diver-
sity.

Theorem 18. pBorda-Manipulation is solvable in time O(f(k, d)(n logm)O(1)), where k
and d denote the size of a minimum vertex cover and the diversity of A respectively, and f :
N2 → N is a computable function.
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Proof. At a high level, the proof proceeds by partitioning the vertices of the independent set
of A into equivalence classes based on their interactions with the vertex cover, and exploiting
a size bound on the number of such equivalence classes in the subsequent Integer Linear
Programming formulation. Figure 10 illustrates the main ideas involved in the proof via a
toy example. As always, we will assume upfront that the distinguished candidate i∗ wins all its
pairwise comparisons in the manipulator’s vote, thereby freezing its pBorda score s∗.

We start with the necessary notation. Let S ⊆ V (A) be a vertex cover of A of size k, and
let I = V (A) \ S be the corresponding independent set. We begin by partitioning the vertices of
the independent set I into equivalence classes based on their interactions with the vertex cover
(refer to Figure 10a for an example). In particular, for any subset T ⊆ S of the vertex cover,
let IT ⊆ I denote the set of all vertices of the independent set whose neighborhood within A is
exactly the set T .22 That is, IT = {u ∈ I | N (u) ∩ A = T}. Next, given T = {v1, . . . , vt} ⊆ S
and a vector ET = 〈(α1, β1), . . . , (αt, βt)〉 consisting of pairs of non-negative integers (αi, βi),
define the equivalence class IT,ET ⊆ I as the set of all vertices of the independent set with the
following properties:

• each vertex of IT,ET has the exact same neighborhood in the vertex cover (i.e. the set T ),
and

• for any pair of vertices vi ∈ T and u ∈ IT,ET , the candidate pair (vi, u) is in αi : βi
configuration with respect to the votes of the non-manipulators.

Thus, given a preference profile Π,

IT,ET = {u ∈ IT |mvi,u(Π) = αi and mu,vi(Π) = βi for all i ∈ [t]}.

Note that since the diversity d of the instance is bounded, any vertex of the independent set
must belong to exactly one of at most 2k · dk equivalence classes. This is because there are 2k

choices for T , and for each such choice, there are at most dk vectors ET .
Call a vertex u ∈ IT,ET safe with respect to a vector z ∈ {−1, 0, 1}|T | if the excess score of u

remains zero or less for the following vote of the manipulator: For each vi ∈ T ,

• u� vi if z(i) = +1,

• skip the comparison between u and vi if z(i) = 0, and

• vi�u if z(i) = −1.

Since the pBorda score of u can only be affected via the comparisons in A that involve u, fixing
the vote vector for such pairs fixes the pBorda score of u. Similarly, define the safety-set of a
vertex u ∈ IT,ET as the set of all vectors z ∈ {−1, 0, 1}|T | with respect to which u is safe (refer
to Figure 10b for an example).

We say that a vertex u ∈ IT,ET sees a vote z ∈ {−1, 0, 1}|T | of the manipulator if z is
the restriction of the manipulator’s vote to the pairwise comparisons in A involving u. Hence,
another way of saying that a vertex u is safe is if it sees a vector z that keeps its pBorda score
below that of i∗.

Given an equivalence class IT,ET and the safety-set for each u ∈ IT,ET , define a safe-subclass
as the set of all vertices in the equivalence class IT,ET with identical safety-sets. We denote
the number of safe-subclasses in IT,ET by NT,ET . Thus, NT,ET ≤ 3k, since the number of safe-
subclasses within an equivalence class is at most the number of distinct vectors z ∈ {−1, 0, 1}|T |
seen by any vertex in it, which is at most 3k.

We will now make a key claim regarding the structure of the solutions: For any valid solution
of pBorda-Manipulation, there exists another (possibly different) valid solution where all

22The neighborhood of a vertex u within A, denoted by N (u) ∩ A, is the set of all vertices in V (A) that are
adjacent to u in A. That is, N (u) ∩ A = {v ∈ V (A) : {u, v} ∈ A}.
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pBorda scores

i∗ : 0
v1 : −3/2
v2 : −2/3
v3 : −2/3
v4 : 1/2
v5 : 1/2
v6 : 1/2
v7 : 2/3
v8 : 0

(a) Action space A and pBorda scores

Eqv. class A = {v4, v5, v6}

Safety set =
{
{−1,−1}, {−1, 0}

}
with respect to T = {v1, v2}.

Eqv. class B = {v7}

Safety set =
{
{−1,−1}

}
with respect to T = {v2, v3}.

Eqv. class C = {v8}

Safety set =
{
{−1}, {0}

}
with respect to T = {v3}.

(b) Safety sets for the equivalence classes

Constraints for v1:

−3/2 + Z{v1,v2},〈(0:1,1:1)〉,{−1,−1},A ·
(

1
(0+1)(0+1+1)

· |A|
)

+ Z{v1,v2},〈(0:1,1:1)〉,{−1,0},A · (0 · |A|) ≤ 0.

Constraints for v2:

−2/3 + Z{v1,v2},〈(0:1,1:1)〉,{−1,−1},A ·
(

1
(1+1)(1+1+1)

· |A|
)

+ Z{v1,v2},〈(0:1,1:1)〉,{−1,0},A · (0 · |A|) +

Z{v2,v3},〈(1:1,0:1)〉,{−1,−1},B ·
(

1
(1+1)(1+1+1)

· |B|
)
≤ 0.

Constraints for v3:

−2/3 + Z{v2,v3},〈(1:1,0:1)〉,{−1,−1},B ·
(

1
(0+1)(0+1+1)

· |B|
)

+ Z{v3},〈(1:1)〉,{−1},C ·
(

1
(1+1)(1+1+1)

· |C|
)

+

Z{v3},〈(1:1)〉,{0},C · (0 · |C|) ≤ 0.

(c) Excess score constraints in the ILP formulation

Figure 10: Illustrating the main ideas in the proof of Theorem 18 on a toy instance.
Subfigure (a) shows the action space A of the manipulator, consisting of the candidates v1, . . . , v8 and
the distinguished candidate i∗. Each solid edge indicates a pairwise comparison that the manipulator is
allowed to make. The label “a : b” for an edge (vi, vj) means the pair is in a : b configuration (based
on the votes of the non-manipulators). For example, the pair (v1, v4) is in 0 : 1 configuration. The
shaded vertices v1, v2, v3 indicate the minimum vertex cover S of A, and the directed edges denote the
manipulator’s guess �S for the comparisons within S. The table next to the action space shows the
pBorda scores of all candidates after the manipulator has made the guess �S . Notice that all vertices
in the set {v4, v5, v6} are adjacent to the same subset of S (namely, {v1, v2}), and also have identical
interactions with this set (namely, via 0 : 1 and 1 : 1 edges). As a result, the set {v4, v5, v6} constitutes
an equivalence class (denoted by ‘Eqv. class A’). Similarly, the singleton sets {v7} and {v8} correspond
to the equivalence classes B and C respectively. Subfigure (b) specifies the set of votes that are safe
(i.e., the safety set) for each equivalence class. Thus, for instance, for the equivalence class A, it is safe
for each vertex to either lose against v1 and draw against v2 (this corresponds to the vote {−1, 0}), or
lose against both v1 and v2 (this corresponds to the vote {−1,−1}). Subfigure (c) describes the excess
score constraints for all vertices in the vertex cover. In particular, for the vertex v2, we start from its
current pBorda score (which is −2/3), and consider all possible changes in its pBorda score that can be
brought about by its interactions with the equivalence classes A and B. The former is captured by the
binary variables Z{v1,v2},〈(0:1,1:1)〉,{−1,−1},A and Z{v1,v2},〈(0:1,1:1)〉,{−1,0},A, while the latter is captured by
the binary variable Z{v2,v3},〈(1:1,0:1)〉,{−1,−1},B .
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vertices inside each safe-subclass see the same vote vector. Indeed, for any valid vote � and
for any given safe-subclass, let z′ be the restriction of � as seen by the vertex with the highest
excess score in that safe-subclass (if there are many such vertices, pick one arbitrarily). Then,
another valid vote can be constructed as follows: in the original vote �, replace the pairwise
comparisons corresponding to the vote vector currently seen by each vertex inside the safe-
subclass by z′, while keeping the rest of the vote unchanged. The excess score constraints for
all the vertices inside the safe-subclass continue to remain satisfied since, by definition of a
safe-subclass, the vector z′ belongs to the safety-set of all such vertices. Similarly, excess scores
constraints for all the other vertices in the independent set continue to remain satisfied since
their scores are unaffected by this change. Finally, the excess score constraints for all vertices in
the vertex cover continue to remain satisfied since they do not gain any additional score in the
above process. Therefore, without loss of generality, all vertices inside the same safe-subclass
see the same vote of the manipulator. This observation is at the heart of our Integer Linear
Programming formulation, since it allows us to simply define a variable for each safe-subclass,
instead of for each vertex in the independent set. The former is purely a function of d and k,
while the latter can be a function of n.

We are now ready to describe our algorithm for pBorda-Manipulation. Our algorithm
takes as input an instance of pBorda-Manipulation, namely 〈Π, i∗,A〉 (we assume pref-type

= unrestricted), and returns a YES/NO output indicating the existence of a valid manipulative
vote (along with a valid vote, if one exists). The algorithm starts by guessing the manipula-
tor’s vote within the vertex cover. For each such guess, the algorithm uses Integer Linear
Programming (ILP) to solve separately for each equivalence class, and checks if the combined
vote constitutes a valid solution. If yes, the algorithm terminates with a YES output along
with the manipulative vote; otherwise the algorithm returns NO. We will first describe the ILP
formulation, followed by arguing the correctness of the algorithm and analyzing its running
time.

1. Guessing the solution inside the vertex cover : We begin by guessing the solution �S
restricted to the pairs {u, v} ∈ A such that u ∈ S and v ∈ S. Since there are at most

(
k
2

)
such pairs, the total number of choices is at most 3O(k

2). For each such guess �S , we obtain
a new instance of pBorda-Manipulation, namely 〈Π′, i∗,A′〉, where Π′ is a voting profile
consisting of the original votes of the non-manipulators combined with the manipulator’s
vote �S over the vertex cover, and A′ represents the restriction of the graph A to the
bipartite subgraph S × I.23

2. Formulating the ILP : We will now describe the variables and constraints for the ILP.

Variables: For each subset T ⊆ S, each score vector ET = 〈(α1, β1), . . . , (αt, βt)〉,
each 1 ≤ p ≤ 3|T | and each 1 ≤ q ≤ NT,ET , we define a binary variable ZT,ET ,p,q ∈ {0, 1}.
Here ZT,ET ,p,q = 1 (respectively 0) indicates that given the set T and the score vector ET
(and hence the induced equivalence class IT,ET ), the safe-subclass indexed by q sees (re-
spectively does not see) the vote vector indexed by p. Thus, there are at most 2k · dk · 32k
variables overall. Note that the number of variables is purely a function of d and k, and
does not depend on the input size n.

Constraints: Our ILP formulation consists of three types of constraints.

(a) Sanity constraints:

(i) ZT,ET ,p,q ∈ {0, 1} for all T, ET , p and q.

23Notice that S×I is bipartite because the manipulator has already made a guess �S about all pairs of vertices
in S that are adjacent in A (hence, these edges are not a part of the new action space A′) and the vertices in I,
by definition, cannot be adjacent in A (or A′).
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(ii) For every T , ET and q,
∑

p ZT,ET ,p,q = 1 (requiring that each safe-subclass sees
exactly one vote vector).

(b) Excess score constraints for the vertex cover : For each vertex vi ∈ S,

svi +
∑

T∈Tv
∑

ET

∑
q

∑
p ZT,ET ,p,q · [pi = −1] · βi

(αi+βi)(αi+βi+1) · |q|+

ZT,ET ,p,q · [pi = 0] · 0 + ZT,ET ,p,q · [pi = +1] · −αi
(αi+βi)(αi+βi+1) · |q| ≤ s

∗,

where [·] is the Iverson bracket, svi is the pBorda score of vi due to the votes of
the non-manipulators, Tv = {T ⊆ S | v ∈ T}, pi is the ith element of the vector
indexed by p, and |q| represents the cardinality of the safe-subclass indexed by q.
The latter can be efficiently precomputed. Recall that the terms involving αi and βi
in the above inequality correspond to the score transfers under the pBorda rule (refer
to Section 2.4). Figure 10c shows the excess score constraints for a small election
instance.

(c) Excess score constraints for the independent set : For all T , ET , p and q,

ZT,ET ,p,q ≤ Z
safe
T,ET ,p,q

,

where Zsafe
T,ET ,p,q

∈ {0, 1} is a (precomputed) binary indicator which is 1 whenever,
given T and ET , the vector indexed by p belongs to the safety-set of (any vertex in)
the safe-subclass indexed by q; and is 0 otherwise.

Running time: As remarked earlier, the number of variables that we have introduced is a
function of d and k alone (instead of the input size n). Therefore, from the result of Lenstra Jr
(1983), the Integer Linear Programming subroutine (and, as a result, the overall algorithm)
is FPT in these parameters.

Correctness: If the above algorithm returns a set of binary outputs ZT,ET ,p,q, then a valid
manipulative vote can be uniquely constructed from these values given the correctness of the
sanity and excess score constraints. Conversely, if there exists a valid vote, then there also
exists a feasible solution to the above ILP. In this case, by the correctness of the ILP solver, we
will obtain a (possibly different) feasible output that can, as before, be uniquely transformed
into a manipulative vote. This completes the proof of Theorem 18.

5 Concluding Remarks

We considered the phenomenon of manipulation in the model of pairwise preferences and showed
results of both axiomatic and computational flavor. In particular, we provided a complete un-
derstanding of how the computational complexity of manipulating the pairwise Borda (pBorda)
rule and the Copelandα family of pairwise voting rules is influenced by the action space of the
manipulator and the type of preference relation, up to the point of distinguishing the polynomial
time cases from the NP-complete ones.

We also took a closer look at the case when there is no restriction on the nature of the
manipulator’s vote, and gave a complete parameterized classification based on various natural
structural parameters relating to the action space. This involved the introduction of diversity
as a parameter, which we demonstrated to be useful from an algorithmic perspective.

Our results extend quite naturally to many other closely related problems such as destructive
manipulation (i.e., making the distinguished candidate lose), or generalizations such as top-k
manipulation and bottom-k manipulation (i.e., ensuring a top-k or bottom-k finish for the
distinguished candidate). Furthermore, many of our results rely only on a certain locality
property of the pairwise voting rule, and turn out to be true for any pairwise voting rule with
this property.
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The most natural direction for future research would be to understand the complexity of
manipulation in the pairwise preference model for other voting rules such as PageRank (Brin
and Page, 2012), HodgeRank (Jiang et al., 2011), Ranked Pairs and Schulze’s rule (Parkes and
Xia, 2012). An ambitious question in this context would be a complete classification of the
complexity of manipulation by a single voter in the space of all pairwise voting rules. The
question of manipulation by a coalition of voters, both in weighted and unweighted elections, is
also interesting.
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Possible and Necessary Winners of Partial Tournaments. Journal of Artificial Intelligence
Research, 54:493–534, 2015. (Cited on pages 15 and 16)

John J Bartholdi III and James B Orlin. Single Transferable Vote Resists Strategic Voting.
Social Choice and Welfare, 8(4):341–354, 1991. (Cited on page 2)

John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting Schemes for Which It Can
Be Difficult to Tell Who Won the Election. Social Choice and Welfare, 6(2):157–165, 1989a.
(Cited on pages 17 and 39)

John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. The Computational Difficulty
of Manipulating an Election. Social Choice and Welfare, 6(3):227–241, 1989b. (Cited on
pages 1, 2, 17, and 20)

56



Dorothea Baumeister and Jörg Rothe. Taking the Final Step to a Full Dichotomy of the
Possible Winner Problem in Pure Scoring Rules. Information Processing Letters, 112(5):
186–190, February 2012. (Cited on page 15)

Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, and Jörg Rothe. Campaigns for Lazy
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Katarina Cechlárová, Eva Potpinková, and Ildikó Schlotter. Refining the Complexity of the
Sports Elimination Problem. Discrete Applied Mathematics, 199:172 – 186, 2016. (Cited on
pages 39, 42, and 48)

57



Jianer Chen, Iyad A Kanj, and Ge Xia. Improved Upper Bounds for Vertex Cover. Theoretical
Computer Science, 411(40):3736–3756, 2010. (Cited on page 11)

Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise Ranking Ag-
gregation in a Crowdsourced Setting. In Proceedings of the 6th ACM International Conference
on Web Search and Data Mining (WSDM), pages 193–202, 2013. (Cited on page 2)

Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When are Elections with Few Can-
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